Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\times \frac{1}{2}+\sqrt{\frac{25}{31}}
Tuhia anō te pūtake rua o te whakawehenga \frac{1}{4} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{4}}. Tuhia te pūtakerua o te taurunga me te tauraro.
1+\sqrt{\frac{25}{31}}
Me whakakore te 2 me te 2.
1+\frac{\sqrt{25}}{\sqrt{31}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{25}{31}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{25}}{\sqrt{31}}.
1+\frac{5}{\sqrt{31}}
Tātaitia te pūtakerua o 25 kia tae ki 5.
1+\frac{5\sqrt{31}}{\left(\sqrt{31}\right)^{2}}
Whakangāwaritia te tauraro o \frac{5}{\sqrt{31}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{31}.
1+\frac{5\sqrt{31}}{31}
Ko te pūrua o \sqrt{31} ko 31.
\frac{31}{31}+\frac{5\sqrt{31}}{31}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{31}{31}.
\frac{31+5\sqrt{31}}{31}
Tā te mea he rite te tauraro o \frac{31}{31} me \frac{5\sqrt{31}}{31}, me tāpiri rāua mā te tāpiri i ō raua taurunga.