Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2^{n-1}=\frac{1}{32}
Whakamahia ngā ture taupū me ngā taupū kōaro hei whakaoti i te whārite.
\log(2^{n-1})=\log(\frac{1}{32})
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
\left(n-1\right)\log(2)=\log(\frac{1}{32})
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
n-1=\frac{\log(\frac{1}{32})}{\log(2)}
Whakawehea ngā taha e rua ki te \log(2).
n-1=\log_{2}\left(\frac{1}{32}\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
n=-5-\left(-1\right)
Me tāpiri 1 ki ngā taha e rua o te whārite.