Aromātai
25
Tauwehe
5^{2}
Tohaina
Kua tāruatia ki te papatopenga
8+\frac{10}{2}+5\times 3+4-5\times 2-8+4\times 2^{2}-\frac{20}{4}
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
8+5+5\times 3+4-5\times 2-8+4\times 2^{2}-\frac{20}{4}
Whakawehea te 10 ki te 2, kia riro ko 5.
13+5\times 3+4-5\times 2-8+4\times 2^{2}-\frac{20}{4}
Tāpirihia te 8 ki te 5, ka 13.
13+15+4-5\times 2-8+4\times 2^{2}-\frac{20}{4}
Whakareatia te 5 ki te 3, ka 15.
28+4-5\times 2-8+4\times 2^{2}-\frac{20}{4}
Tāpirihia te 13 ki te 15, ka 28.
32-5\times 2-8+4\times 2^{2}-\frac{20}{4}
Tāpirihia te 28 ki te 4, ka 32.
32-10-8+4\times 2^{2}-\frac{20}{4}
Whakareatia te 5 ki te 2, ka 10.
22-8+4\times 2^{2}-\frac{20}{4}
Tangohia te 10 i te 32, ka 22.
14+4\times 2^{2}-\frac{20}{4}
Tangohia te 8 i te 22, ka 14.
14+4\times 4-\frac{20}{4}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
14+16-\frac{20}{4}
Whakareatia te 4 ki te 4, ka 16.
30-\frac{20}{4}
Tāpirihia te 14 ki te 16, ka 30.
30-5
Whakawehea te 20 ki te 4, kia riro ko 5.
25
Tangohia te 5 i te 30, ka 25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}