Whakaoti mō x
x=\frac{2\sqrt{2}}{3}\approx 0.942809042
x=-\frac{2\sqrt{2}}{3}\approx -0.942809042
Graph
Tohaina
Kua tāruatia ki te papatopenga
4+9x^{2}=12
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
9x^{2}=12-4
Tangohia te 4 mai i ngā taha e rua.
9x^{2}=8
Tangohia te 4 i te 12, ka 8.
x^{2}=\frac{8}{9}
Whakawehea ngā taha e rua ki te 9.
x=\frac{2\sqrt{2}}{3} x=-\frac{2\sqrt{2}}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
4+9x^{2}=12
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4+9x^{2}-12=0
Tangohia te 12 mai i ngā taha e rua.
-8+9x^{2}=0
Tangohia te 12 i te 4, ka -8.
9x^{2}-8=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 9\left(-8\right)}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 0 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 9\left(-8\right)}}{2\times 9}
Pūrua 0.
x=\frac{0±\sqrt{-36\left(-8\right)}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{0±\sqrt{288}}{2\times 9}
Whakareatia -36 ki te -8.
x=\frac{0±12\sqrt{2}}{2\times 9}
Tuhia te pūtakerua o te 288.
x=\frac{0±12\sqrt{2}}{18}
Whakareatia 2 ki te 9.
x=\frac{2\sqrt{2}}{3}
Nā, me whakaoti te whārite x=\frac{0±12\sqrt{2}}{18} ina he tāpiri te ±.
x=-\frac{2\sqrt{2}}{3}
Nā, me whakaoti te whārite x=\frac{0±12\sqrt{2}}{18} ina he tango te ±.
x=\frac{2\sqrt{2}}{3} x=-\frac{2\sqrt{2}}{3}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}