Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4+9x^{2}=12
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
9x^{2}=12-4
Tangohia te 4 mai i ngā taha e rua.
9x^{2}=8
Tangohia te 4 i te 12, ka 8.
x^{2}=\frac{8}{9}
Whakawehea ngā taha e rua ki te 9.
x=\frac{2\sqrt{2}}{3} x=-\frac{2\sqrt{2}}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
4+9x^{2}=12
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4+9x^{2}-12=0
Tangohia te 12 mai i ngā taha e rua.
-8+9x^{2}=0
Tangohia te 12 i te 4, ka -8.
9x^{2}-8=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 9\left(-8\right)}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 0 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 9\left(-8\right)}}{2\times 9}
Pūrua 0.
x=\frac{0±\sqrt{-36\left(-8\right)}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{0±\sqrt{288}}{2\times 9}
Whakareatia -36 ki te -8.
x=\frac{0±12\sqrt{2}}{2\times 9}
Tuhia te pūtakerua o te 288.
x=\frac{0±12\sqrt{2}}{18}
Whakareatia 2 ki te 9.
x=\frac{2\sqrt{2}}{3}
Nā, me whakaoti te whārite x=\frac{0±12\sqrt{2}}{18} ina he tāpiri te ±.
x=-\frac{2\sqrt{2}}{3}
Nā, me whakaoti te whārite x=\frac{0±12\sqrt{2}}{18} ina he tango te ±.
x=\frac{2\sqrt{2}}{3} x=-\frac{2\sqrt{2}}{3}
Kua oti te whārite te whakatau.