Whakaoti mō l
l=\frac{5}{49298}\approx 0.000101424
Tohaina
Kua tāruatia ki te papatopenga
2=628\sqrt{\frac{l}{10}}
Whakareatia te 2 ki te 314, ka 628.
628\sqrt{\frac{l}{10}}=2
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\sqrt{\frac{l}{10}}=\frac{2}{628}
Whakawehea ngā taha e rua ki te 628.
\sqrt{\frac{l}{10}}=\frac{1}{314}
Whakahekea te hautanga \frac{2}{628} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1}{10}l=\frac{1}{98596}
Pūruatia ngā taha e rua o te whārite.
\frac{\frac{1}{10}l}{\frac{1}{10}}=\frac{\frac{1}{98596}}{\frac{1}{10}}
Me whakarea ngā taha e rua ki te 10.
l=\frac{\frac{1}{98596}}{\frac{1}{10}}
Mā te whakawehe ki te \frac{1}{10} ka wetekia te whakareanga ki te \frac{1}{10}.
l=\frac{5}{49298}
Whakawehe \frac{1}{98596} ki te \frac{1}{10} mā te whakarea \frac{1}{98596} ki te tau huripoki o \frac{1}{10}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}