Whakaoti mō x
x = \frac{\sqrt{390}}{15} \approx 1.316561177
x = -\frac{\sqrt{390}}{15} \approx -1.316561177
Graph
Tohaina
Kua tāruatia ki te papatopenga
15x^{2}-24=2
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
15x^{2}=2+24
Me tāpiri te 24 ki ngā taha e rua.
15x^{2}=26
Tāpirihia te 2 ki te 24, ka 26.
x^{2}=\frac{26}{15}
Whakawehea ngā taha e rua ki te 15.
x=\frac{\sqrt{390}}{15} x=-\frac{\sqrt{390}}{15}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
15x^{2}-24=2
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
15x^{2}-24-2=0
Tangohia te 2 mai i ngā taha e rua.
15x^{2}-26=0
Tangohia te 2 i te -24, ka -26.
x=\frac{0±\sqrt{0^{2}-4\times 15\left(-26\right)}}{2\times 15}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 15 mō a, 0 mō b, me -26 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 15\left(-26\right)}}{2\times 15}
Pūrua 0.
x=\frac{0±\sqrt{-60\left(-26\right)}}{2\times 15}
Whakareatia -4 ki te 15.
x=\frac{0±\sqrt{1560}}{2\times 15}
Whakareatia -60 ki te -26.
x=\frac{0±2\sqrt{390}}{2\times 15}
Tuhia te pūtakerua o te 1560.
x=\frac{0±2\sqrt{390}}{30}
Whakareatia 2 ki te 15.
x=\frac{\sqrt{390}}{15}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{390}}{30} ina he tāpiri te ±.
x=-\frac{\sqrt{390}}{15}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{390}}{30} ina he tango te ±.
x=\frac{\sqrt{390}}{15} x=-\frac{\sqrt{390}}{15}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}