Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

15x^{2}-24=2
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
15x^{2}=2+24
Me tāpiri te 24 ki ngā taha e rua.
15x^{2}=26
Tāpirihia te 2 ki te 24, ka 26.
x^{2}=\frac{26}{15}
Whakawehea ngā taha e rua ki te 15.
x=\frac{\sqrt{390}}{15} x=-\frac{\sqrt{390}}{15}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
15x^{2}-24=2
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
15x^{2}-24-2=0
Tangohia te 2 mai i ngā taha e rua.
15x^{2}-26=0
Tangohia te 2 i te -24, ka -26.
x=\frac{0±\sqrt{0^{2}-4\times 15\left(-26\right)}}{2\times 15}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 15 mō a, 0 mō b, me -26 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 15\left(-26\right)}}{2\times 15}
Pūrua 0.
x=\frac{0±\sqrt{-60\left(-26\right)}}{2\times 15}
Whakareatia -4 ki te 15.
x=\frac{0±\sqrt{1560}}{2\times 15}
Whakareatia -60 ki te -26.
x=\frac{0±2\sqrt{390}}{2\times 15}
Tuhia te pūtakerua o te 1560.
x=\frac{0±2\sqrt{390}}{30}
Whakareatia 2 ki te 15.
x=\frac{\sqrt{390}}{15}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{390}}{30} ina he tāpiri te ±.
x=-\frac{\sqrt{390}}{15}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{390}}{30} ina he tango te ±.
x=\frac{\sqrt{390}}{15} x=-\frac{\sqrt{390}}{15}
Kua oti te whārite te whakatau.