Whakaoti mō x
x=\sqrt{17}+5\approx 9.123105626
x=5-\sqrt{17}\approx 0.876894374
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
2 = - \frac { 1 } { 4 } x ^ { 2 } + \frac { 5 } { 2 } x
Tohaina
Kua tāruatia ki te papatopenga
-\frac{1}{4}x^{2}+\frac{5}{2}x=2
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-\frac{1}{4}x^{2}+\frac{5}{2}x-2=0
Tangohia te 2 mai i ngā taha e rua.
x=\frac{-\frac{5}{2}±\sqrt{\left(\frac{5}{2}\right)^{2}-4\left(-\frac{1}{4}\right)\left(-2\right)}}{2\left(-\frac{1}{4}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -\frac{1}{4} mō a, \frac{5}{2} mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{5}{2}±\sqrt{\frac{25}{4}-4\left(-\frac{1}{4}\right)\left(-2\right)}}{2\left(-\frac{1}{4}\right)}
Pūruatia \frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\frac{5}{2}±\sqrt{\frac{25}{4}-2}}{2\left(-\frac{1}{4}\right)}
Whakareatia -4 ki te -\frac{1}{4}.
x=\frac{-\frac{5}{2}±\sqrt{\frac{17}{4}}}{2\left(-\frac{1}{4}\right)}
Tāpiri \frac{25}{4} ki te -2.
x=\frac{-\frac{5}{2}±\frac{\sqrt{17}}{2}}{2\left(-\frac{1}{4}\right)}
Tuhia te pūtakerua o te \frac{17}{4}.
x=\frac{-\frac{5}{2}±\frac{\sqrt{17}}{2}}{-\frac{1}{2}}
Whakareatia 2 ki te -\frac{1}{4}.
x=\frac{\sqrt{17}-5}{-\frac{1}{2}\times 2}
Nā, me whakaoti te whārite x=\frac{-\frac{5}{2}±\frac{\sqrt{17}}{2}}{-\frac{1}{2}} ina he tāpiri te ±. Tāpiri -\frac{5}{2} ki te \frac{\sqrt{17}}{2}.
x=5-\sqrt{17}
Whakawehe \frac{-5+\sqrt{17}}{2} ki te -\frac{1}{2} mā te whakarea \frac{-5+\sqrt{17}}{2} ki te tau huripoki o -\frac{1}{2}.
x=\frac{-\sqrt{17}-5}{-\frac{1}{2}\times 2}
Nā, me whakaoti te whārite x=\frac{-\frac{5}{2}±\frac{\sqrt{17}}{2}}{-\frac{1}{2}} ina he tango te ±. Tango \frac{\sqrt{17}}{2} mai i -\frac{5}{2}.
x=\sqrt{17}+5
Whakawehe \frac{-5-\sqrt{17}}{2} ki te -\frac{1}{2} mā te whakarea \frac{-5-\sqrt{17}}{2} ki te tau huripoki o -\frac{1}{2}.
x=5-\sqrt{17} x=\sqrt{17}+5
Kua oti te whārite te whakatau.
-\frac{1}{4}x^{2}+\frac{5}{2}x=2
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{-\frac{1}{4}x^{2}+\frac{5}{2}x}{-\frac{1}{4}}=\frac{2}{-\frac{1}{4}}
Me whakarea ngā taha e rua ki te -4.
x^{2}+\frac{\frac{5}{2}}{-\frac{1}{4}}x=\frac{2}{-\frac{1}{4}}
Mā te whakawehe ki te -\frac{1}{4} ka wetekia te whakareanga ki te -\frac{1}{4}.
x^{2}-10x=\frac{2}{-\frac{1}{4}}
Whakawehe \frac{5}{2} ki te -\frac{1}{4} mā te whakarea \frac{5}{2} ki te tau huripoki o -\frac{1}{4}.
x^{2}-10x=-8
Whakawehe 2 ki te -\frac{1}{4} mā te whakarea 2 ki te tau huripoki o -\frac{1}{4}.
x^{2}-10x+\left(-5\right)^{2}=-8+\left(-5\right)^{2}
Whakawehea te -10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -5. Nā, tāpiria te pūrua o te -5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-10x+25=-8+25
Pūrua -5.
x^{2}-10x+25=17
Tāpiri -8 ki te 25.
\left(x-5\right)^{2}=17
Tauwehea x^{2}-10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{17}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-5=\sqrt{17} x-5=-\sqrt{17}
Whakarūnātia.
x=\sqrt{17}+5 x=5-\sqrt{17}
Me tāpiri 5 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}