Whakaoti mō q
q=\frac{\sqrt{6}}{2}+1\approx 2.224744871
q=-\frac{\sqrt{6}}{2}+1\approx -0.224744871
Tohaina
Kua tāruatia ki te papatopenga
2=1-4q+4q^{2}-2q^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(1-2q\right)^{2}.
2=1-4q+2q^{2}
Pahekotia te 4q^{2} me -2q^{2}, ka 2q^{2}.
1-4q+2q^{2}=2
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1-4q+2q^{2}-2=0
Tangohia te 2 mai i ngā taha e rua.
-1-4q+2q^{2}=0
Tangohia te 2 i te 1, ka -1.
2q^{2}-4q-1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
q=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-1\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -4 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-1\right)}}{2\times 2}
Pūrua -4.
q=\frac{-\left(-4\right)±\sqrt{16-8\left(-1\right)}}{2\times 2}
Whakareatia -4 ki te 2.
q=\frac{-\left(-4\right)±\sqrt{16+8}}{2\times 2}
Whakareatia -8 ki te -1.
q=\frac{-\left(-4\right)±\sqrt{24}}{2\times 2}
Tāpiri 16 ki te 8.
q=\frac{-\left(-4\right)±2\sqrt{6}}{2\times 2}
Tuhia te pūtakerua o te 24.
q=\frac{4±2\sqrt{6}}{2\times 2}
Ko te tauaro o -4 ko 4.
q=\frac{4±2\sqrt{6}}{4}
Whakareatia 2 ki te 2.
q=\frac{2\sqrt{6}+4}{4}
Nā, me whakaoti te whārite q=\frac{4±2\sqrt{6}}{4} ina he tāpiri te ±. Tāpiri 4 ki te 2\sqrt{6}.
q=\frac{\sqrt{6}}{2}+1
Whakawehe 4+2\sqrt{6} ki te 4.
q=\frac{4-2\sqrt{6}}{4}
Nā, me whakaoti te whārite q=\frac{4±2\sqrt{6}}{4} ina he tango te ±. Tango 2\sqrt{6} mai i 4.
q=-\frac{\sqrt{6}}{2}+1
Whakawehe 4-2\sqrt{6} ki te 4.
q=\frac{\sqrt{6}}{2}+1 q=-\frac{\sqrt{6}}{2}+1
Kua oti te whārite te whakatau.
2=1-4q+4q^{2}-2q^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(1-2q\right)^{2}.
2=1-4q+2q^{2}
Pahekotia te 4q^{2} me -2q^{2}, ka 2q^{2}.
1-4q+2q^{2}=2
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-4q+2q^{2}=2-1
Tangohia te 1 mai i ngā taha e rua.
-4q+2q^{2}=1
Tangohia te 1 i te 2, ka 1.
2q^{2}-4q=1
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{2q^{2}-4q}{2}=\frac{1}{2}
Whakawehea ngā taha e rua ki te 2.
q^{2}+\left(-\frac{4}{2}\right)q=\frac{1}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
q^{2}-2q=\frac{1}{2}
Whakawehe -4 ki te 2.
q^{2}-2q+1=\frac{1}{2}+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
q^{2}-2q+1=\frac{3}{2}
Tāpiri \frac{1}{2} ki te 1.
\left(q-1\right)^{2}=\frac{3}{2}
Tauwehea q^{2}-2q+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q-1\right)^{2}}=\sqrt{\frac{3}{2}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
q-1=\frac{\sqrt{6}}{2} q-1=-\frac{\sqrt{6}}{2}
Whakarūnātia.
q=\frac{\sqrt{6}}{2}+1 q=-\frac{\sqrt{6}}{2}+1
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}