Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
2=\frac{-8\left(-8\right)}{3}+1
Tuhia te -\frac{8}{3}\left(-8\right) hei hautanga kotahi.
2=\frac{64}{3}+1
Whakareatia te -8 ki te -8, ka 64.
2=\frac{64}{3}+\frac{3}{3}
Me tahuri te 1 ki te hautau \frac{3}{3}.
2=\frac{64+3}{3}
Tā te mea he rite te tauraro o \frac{64}{3} me \frac{3}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
2=\frac{67}{3}
Tāpirihia te 64 ki te 3, ka 67.
\frac{6}{3}=\frac{67}{3}
Me tahuri te 2 ki te hautau \frac{6}{3}.
\text{false}
Whakatauritea te \frac{6}{3} me te \frac{67}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}