Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2+y-3y^{2}=y\left(y-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te 1-3y.
2+y-3y^{2}=y^{2}-3y
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te y-3.
2+y-3y^{2}-y^{2}=-3y
Tangohia te y^{2} mai i ngā taha e rua.
2+y-4y^{2}=-3y
Pahekotia te -3y^{2} me -y^{2}, ka -4y^{2}.
2+y-4y^{2}+3y=0
Me tāpiri te 3y ki ngā taha e rua.
2+4y-4y^{2}=0
Pahekotia te y me 3y, ka 4y.
-4y^{2}+4y+2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-4±\sqrt{4^{2}-4\left(-4\right)\times 2}}{2\left(-4\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -4 mō a, 4 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-4±\sqrt{16-4\left(-4\right)\times 2}}{2\left(-4\right)}
Pūrua 4.
y=\frac{-4±\sqrt{16+16\times 2}}{2\left(-4\right)}
Whakareatia -4 ki te -4.
y=\frac{-4±\sqrt{16+32}}{2\left(-4\right)}
Whakareatia 16 ki te 2.
y=\frac{-4±\sqrt{48}}{2\left(-4\right)}
Tāpiri 16 ki te 32.
y=\frac{-4±4\sqrt{3}}{2\left(-4\right)}
Tuhia te pūtakerua o te 48.
y=\frac{-4±4\sqrt{3}}{-8}
Whakareatia 2 ki te -4.
y=\frac{4\sqrt{3}-4}{-8}
Nā, me whakaoti te whārite y=\frac{-4±4\sqrt{3}}{-8} ina he tāpiri te ±. Tāpiri -4 ki te 4\sqrt{3}.
y=\frac{1-\sqrt{3}}{2}
Whakawehe -4+4\sqrt{3} ki te -8.
y=\frac{-4\sqrt{3}-4}{-8}
Nā, me whakaoti te whārite y=\frac{-4±4\sqrt{3}}{-8} ina he tango te ±. Tango 4\sqrt{3} mai i -4.
y=\frac{\sqrt{3}+1}{2}
Whakawehe -4-4\sqrt{3} ki te -8.
y=\frac{1-\sqrt{3}}{2} y=\frac{\sqrt{3}+1}{2}
Kua oti te whārite te whakatau.
2+y-3y^{2}=y\left(y-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te 1-3y.
2+y-3y^{2}=y^{2}-3y
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te y-3.
2+y-3y^{2}-y^{2}=-3y
Tangohia te y^{2} mai i ngā taha e rua.
2+y-4y^{2}=-3y
Pahekotia te -3y^{2} me -y^{2}, ka -4y^{2}.
2+y-4y^{2}+3y=0
Me tāpiri te 3y ki ngā taha e rua.
2+4y-4y^{2}=0
Pahekotia te y me 3y, ka 4y.
4y-4y^{2}=-2
Tangohia te 2 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-4y^{2}+4y=-2
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-4y^{2}+4y}{-4}=-\frac{2}{-4}
Whakawehea ngā taha e rua ki te -4.
y^{2}+\frac{4}{-4}y=-\frac{2}{-4}
Mā te whakawehe ki te -4 ka wetekia te whakareanga ki te -4.
y^{2}-y=-\frac{2}{-4}
Whakawehe 4 ki te -4.
y^{2}-y=\frac{1}{2}
Whakahekea te hautanga \frac{-2}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
y^{2}-y+\left(-\frac{1}{2}\right)^{2}=\frac{1}{2}+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-y+\frac{1}{4}=\frac{1}{2}+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}-y+\frac{1}{4}=\frac{3}{4}
Tāpiri \frac{1}{2} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(y-\frac{1}{2}\right)^{2}=\frac{3}{4}
Tauwehea y^{2}-y+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{1}{2}\right)^{2}}=\sqrt{\frac{3}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-\frac{1}{2}=\frac{\sqrt{3}}{2} y-\frac{1}{2}=-\frac{\sqrt{3}}{2}
Whakarūnātia.
y=\frac{\sqrt{3}+1}{2} y=\frac{1-\sqrt{3}}{2}
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.