Whakaoti mō x
x = \frac{\sqrt{41} + 3}{8} \approx 1.17539053
x=\frac{3-\sqrt{41}}{8}\approx -0.42539053
Graph
Tohaina
Kua tāruatia ki te papatopenga
-4x^{2}+3x+2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{3^{2}-4\left(-4\right)\times 2}}{2\left(-4\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -4 mō a, 3 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-4\right)\times 2}}{2\left(-4\right)}
Pūrua 3.
x=\frac{-3±\sqrt{9+16\times 2}}{2\left(-4\right)}
Whakareatia -4 ki te -4.
x=\frac{-3±\sqrt{9+32}}{2\left(-4\right)}
Whakareatia 16 ki te 2.
x=\frac{-3±\sqrt{41}}{2\left(-4\right)}
Tāpiri 9 ki te 32.
x=\frac{-3±\sqrt{41}}{-8}
Whakareatia 2 ki te -4.
x=\frac{\sqrt{41}-3}{-8}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{41}}{-8} ina he tāpiri te ±. Tāpiri -3 ki te \sqrt{41}.
x=\frac{3-\sqrt{41}}{8}
Whakawehe -3+\sqrt{41} ki te -8.
x=\frac{-\sqrt{41}-3}{-8}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{41}}{-8} ina he tango te ±. Tango \sqrt{41} mai i -3.
x=\frac{\sqrt{41}+3}{8}
Whakawehe -3-\sqrt{41} ki te -8.
x=\frac{3-\sqrt{41}}{8} x=\frac{\sqrt{41}+3}{8}
Kua oti te whārite te whakatau.
-4x^{2}+3x+2=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-4x^{2}+3x+2-2=-2
Me tango 2 mai i ngā taha e rua o te whārite.
-4x^{2}+3x=-2
Mā te tango i te 2 i a ia ake anō ka toe ko te 0.
\frac{-4x^{2}+3x}{-4}=-\frac{2}{-4}
Whakawehea ngā taha e rua ki te -4.
x^{2}+\frac{3}{-4}x=-\frac{2}{-4}
Mā te whakawehe ki te -4 ka wetekia te whakareanga ki te -4.
x^{2}-\frac{3}{4}x=-\frac{2}{-4}
Whakawehe 3 ki te -4.
x^{2}-\frac{3}{4}x=\frac{1}{2}
Whakahekea te hautanga \frac{-2}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{3}{4}x+\left(-\frac{3}{8}\right)^{2}=\frac{1}{2}+\left(-\frac{3}{8}\right)^{2}
Whakawehea te -\frac{3}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{8}. Nā, tāpiria te pūrua o te -\frac{3}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{1}{2}+\frac{9}{64}
Pūruatia -\frac{3}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{41}{64}
Tāpiri \frac{1}{2} ki te \frac{9}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{8}\right)^{2}=\frac{41}{64}
Tauwehea x^{2}-\frac{3}{4}x+\frac{9}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{8}\right)^{2}}=\sqrt{\frac{41}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{8}=\frac{\sqrt{41}}{8} x-\frac{3}{8}=-\frac{\sqrt{41}}{8}
Whakarūnātia.
x=\frac{\sqrt{41}+3}{8} x=\frac{3-\sqrt{41}}{8}
Me tāpiri \frac{3}{8} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}