Whakaoti mō x
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{3x-1}=3x-1-2
Me tango 2 mai i ngā taha e rua o te whārite.
\sqrt{3x-1}=3x-3
Tangohia te 2 i te -1, ka -3.
\left(\sqrt{3x-1}\right)^{2}=\left(3x-3\right)^{2}
Pūruatia ngā taha e rua o te whārite.
3x-1=\left(3x-3\right)^{2}
Tātaihia te \sqrt{3x-1} mā te pū o 2, kia riro ko 3x-1.
3x-1=9x^{2}-18x+9
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3x-3\right)^{2}.
3x-1-9x^{2}=-18x+9
Tangohia te 9x^{2} mai i ngā taha e rua.
3x-1-9x^{2}+18x=9
Me tāpiri te 18x ki ngā taha e rua.
21x-1-9x^{2}=9
Pahekotia te 3x me 18x, ka 21x.
21x-1-9x^{2}-9=0
Tangohia te 9 mai i ngā taha e rua.
21x-10-9x^{2}=0
Tangohia te 9 i te -1, ka -10.
-9x^{2}+21x-10=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=21 ab=-9\left(-10\right)=90
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -9x^{2}+ax+bx-10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,90 2,45 3,30 5,18 6,15 9,10
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 90.
1+90=91 2+45=47 3+30=33 5+18=23 6+15=21 9+10=19
Tātaihia te tapeke mō ia takirua.
a=15 b=6
Ko te otinga te takirua ka hoatu i te tapeke 21.
\left(-9x^{2}+15x\right)+\left(6x-10\right)
Tuhia anō te -9x^{2}+21x-10 hei \left(-9x^{2}+15x\right)+\left(6x-10\right).
-3x\left(3x-5\right)+2\left(3x-5\right)
Tauwehea te -3x i te tuatahi me te 2 i te rōpū tuarua.
\left(3x-5\right)\left(-3x+2\right)
Whakatauwehea atu te kīanga pātahi 3x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{5}{3} x=\frac{2}{3}
Hei kimi otinga whārite, me whakaoti te 3x-5=0 me te -3x+2=0.
2+\sqrt{3\times \frac{5}{3}-1}=3\times \frac{5}{3}-1
Whakakapia te \frac{5}{3} mō te x i te whārite 2+\sqrt{3x-1}=3x-1.
4=4
Whakarūnātia. Ko te uara x=\frac{5}{3} kua ngata te whārite.
2+\sqrt{3\times \frac{2}{3}-1}=3\times \frac{2}{3}-1
Whakakapia te \frac{2}{3} mō te x i te whārite 2+\sqrt{3x-1}=3x-1.
3=1
Whakarūnātia. Ko te uara x=\frac{2}{3} kāore e ngata ana ki te whārite.
x=\frac{5}{3}
Ko te whārite \sqrt{3x-1}=3x-3 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}