Aromātai
\frac{19}{7}\approx 2.714285714
Tauwehe
\frac{19}{7} = 2\frac{5}{7} = 2.7142857142857144
Tohaina
Kua tāruatia ki te papatopenga
2+\frac{2}{2+\frac{2}{\frac{4}{2}+\frac{1}{2}}}
Me tahuri te 2 ki te hautau \frac{4}{2}.
2+\frac{2}{2+\frac{2}{\frac{4+1}{2}}}
Tā te mea he rite te tauraro o \frac{4}{2} me \frac{1}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
2+\frac{2}{2+\frac{2}{\frac{5}{2}}}
Tāpirihia te 4 ki te 1, ka 5.
2+\frac{2}{2+2\times \frac{2}{5}}
Whakawehe 2 ki te \frac{5}{2} mā te whakarea 2 ki te tau huripoki o \frac{5}{2}.
2+\frac{2}{2+\frac{2\times 2}{5}}
Tuhia te 2\times \frac{2}{5} hei hautanga kotahi.
2+\frac{2}{2+\frac{4}{5}}
Whakareatia te 2 ki te 2, ka 4.
2+\frac{2}{\frac{10}{5}+\frac{4}{5}}
Me tahuri te 2 ki te hautau \frac{10}{5}.
2+\frac{2}{\frac{10+4}{5}}
Tā te mea he rite te tauraro o \frac{10}{5} me \frac{4}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
2+\frac{2}{\frac{14}{5}}
Tāpirihia te 10 ki te 4, ka 14.
2+2\times \frac{5}{14}
Whakawehe 2 ki te \frac{14}{5} mā te whakarea 2 ki te tau huripoki o \frac{14}{5}.
2+\frac{2\times 5}{14}
Tuhia te 2\times \frac{5}{14} hei hautanga kotahi.
2+\frac{10}{14}
Whakareatia te 2 ki te 5, ka 10.
2+\frac{5}{7}
Whakahekea te hautanga \frac{10}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{14}{7}+\frac{5}{7}
Me tahuri te 2 ki te hautau \frac{14}{7}.
\frac{14+5}{7}
Tā te mea he rite te tauraro o \frac{14}{7} me \frac{5}{7}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{19}{7}
Tāpirihia te 14 ki te 5, ka 19.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}