Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
2+\frac{1}{2+\frac{1}{1+1}}=\frac{61}{24}
Whakawehea te 1 ki te 1, kia riro ko 1.
2+\frac{1}{2+\frac{1}{2}}=\frac{61}{24}
Tāpirihia te 1 ki te 1, ka 2.
2+\frac{1}{\frac{4}{2}+\frac{1}{2}}=\frac{61}{24}
Me tahuri te 2 ki te hautau \frac{4}{2}.
2+\frac{1}{\frac{4+1}{2}}=\frac{61}{24}
Tā te mea he rite te tauraro o \frac{4}{2} me \frac{1}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
2+\frac{1}{\frac{5}{2}}=\frac{61}{24}
Tāpirihia te 4 ki te 1, ka 5.
2+1\times \frac{2}{5}=\frac{61}{24}
Whakawehe 1 ki te \frac{5}{2} mā te whakarea 1 ki te tau huripoki o \frac{5}{2}.
2+\frac{2}{5}=\frac{61}{24}
Whakareatia te 1 ki te \frac{2}{5}, ka \frac{2}{5}.
\frac{10}{5}+\frac{2}{5}=\frac{61}{24}
Me tahuri te 2 ki te hautau \frac{10}{5}.
\frac{10+2}{5}=\frac{61}{24}
Tā te mea he rite te tauraro o \frac{10}{5} me \frac{2}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{12}{5}=\frac{61}{24}
Tāpirihia te 10 ki te 2, ka 12.
\frac{288}{120}=\frac{305}{120}
Ko te maha noa iti rawa atu o 5 me 24 ko 120. Me tahuri \frac{12}{5} me \frac{61}{24} ki te hautau me te tautūnga 120.
\text{false}
Whakatauritea te \frac{288}{120} me te \frac{305}{120}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}