Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2+\frac{4\left(\sqrt{3}\right)^{2}-12\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}}{6}\left(5+2\sqrt{6}\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2\sqrt{3}-3\sqrt{2}\right)^{2}.
2+\frac{4\times 3-12\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}}{6}\left(5+2\sqrt{6}\right)
Ko te pūrua o \sqrt{3} ko 3.
2+\frac{12-12\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}}{6}\left(5+2\sqrt{6}\right)
Whakareatia te 4 ki te 3, ka 12.
2+\frac{12-12\sqrt{6}+9\left(\sqrt{2}\right)^{2}}{6}\left(5+2\sqrt{6}\right)
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
2+\frac{12-12\sqrt{6}+9\times 2}{6}\left(5+2\sqrt{6}\right)
Ko te pūrua o \sqrt{2} ko 2.
2+\frac{12-12\sqrt{6}+18}{6}\left(5+2\sqrt{6}\right)
Whakareatia te 9 ki te 2, ka 18.
2+\frac{30-12\sqrt{6}}{6}\left(5+2\sqrt{6}\right)
Tāpirihia te 12 ki te 18, ka 30.
2+\left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right)
Whakawehea ia wā o 30-12\sqrt{6} ki te 6, kia riro ko 5-2\sqrt{6}.
2+25-\left(2\sqrt{6}\right)^{2}
Whakaarohia te \left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 5.
2+25-2^{2}\left(\sqrt{6}\right)^{2}
Whakarohaina te \left(2\sqrt{6}\right)^{2}.
2+25-4\left(\sqrt{6}\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
2+25-4\times 6
Ko te pūrua o \sqrt{6} ko 6.
2+25-24
Whakareatia te 4 ki te 6, ka 24.
2+1
Tangohia te 24 i te 25, ka 1.
3
Tāpirihia te 2 ki te 1, ka 3.