Whakaoti mō y (complex solution)
\left\{\begin{matrix}y=-\frac{x}{2\left(1-525z\right)}\text{, }&z\neq \frac{1}{525}\\y\in \mathrm{C}\text{, }&x=0\text{ and }z=\frac{1}{525}\end{matrix}\right.
Whakaoti mō x
x=2y\left(525z-1\right)
Whakaoti mō y
\left\{\begin{matrix}y=-\frac{x}{2\left(1-525z\right)}\text{, }&z\neq \frac{1}{525}\\y\in \mathrm{R}\text{, }&x=0\text{ and }z=\frac{1}{525}\end{matrix}\right.
Tohaina
Kua tāruatia ki te papatopenga
1x+2y=1050yz
Whakareatia te 30 ki te 35, ka 1050.
1x+2y-1050yz=0
Tangohia te 1050yz mai i ngā taha e rua.
2y-1050yz=-x
Tangohia te 1x mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(2-1050z\right)y=-x
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\frac{\left(2-1050z\right)y}{2-1050z}=-\frac{x}{2-1050z}
Whakawehea ngā taha e rua ki te 2-1050z.
y=-\frac{x}{2-1050z}
Mā te whakawehe ki te 2-1050z ka wetekia te whakareanga ki te 2-1050z.
y=-\frac{x}{2\left(1-525z\right)}
Whakawehe -x ki te 2-1050z.
1x+2y=1050yz
Whakareatia te 30 ki te 35, ka 1050.
1x=1050yz-2y
Tangohia te 2y mai i ngā taha e rua.
x=1050yz-2y
Whakaraupapatia anō ngā kīanga tau.
1x+2y=1050yz
Whakareatia te 30 ki te 35, ka 1050.
1x+2y-1050yz=0
Tangohia te 1050yz mai i ngā taha e rua.
2y-1050yz=-x
Tangohia te 1x mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(2-1050z\right)y=-x
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\frac{\left(2-1050z\right)y}{2-1050z}=-\frac{x}{2-1050z}
Whakawehea ngā taha e rua ki te 2-1050z.
y=-\frac{x}{2-1050z}
Mā te whakawehe ki te 2-1050z ka wetekia te whakareanga ki te 2-1050z.
y=-\frac{x}{2\left(1-525z\right)}
Whakawehe -x ki te 2-1050z.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}