Whakaoti mō k (complex solution)
\left\{\begin{matrix}\\k=1\text{, }&\text{unconditionally}\\k\in \mathrm{C}\text{, }&m=0\end{matrix}\right.
Whakaoti mō m (complex solution)
\left\{\begin{matrix}\\m=0\text{, }&\text{unconditionally}\\m\in \mathrm{C}\text{, }&k=1\end{matrix}\right.
Whakaoti mō k
\left\{\begin{matrix}\\k=1\text{, }&\text{unconditionally}\\k\in \mathrm{R}\text{, }&m=0\end{matrix}\right.
Whakaoti mō m
\left\{\begin{matrix}\\m=0\text{, }&\text{unconditionally}\\m\in \mathrm{R}\text{, }&k=1\end{matrix}\right.
Tohaina
Kua tāruatia ki te papatopenga
km=1m
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
km=m
Whakaraupapatia anō ngā kīanga tau.
mk=m
He hanga arowhānui tō te whārite.
\frac{mk}{m}=\frac{m}{m}
Whakawehea ngā taha e rua ki te m.
k=\frac{m}{m}
Mā te whakawehe ki te m ka wetekia te whakareanga ki te m.
k=1
Whakawehe m ki te m.
1m-km=0
Tangohia te km mai i ngā taha e rua.
-km+m=0
Whakaraupapatia anō ngā kīanga tau.
\left(-k+1\right)m=0
Pahekotia ngā kīanga tau katoa e whai ana i te m.
\left(1-k\right)m=0
He hanga arowhānui tō te whārite.
m=0
Whakawehe 0 ki te 1-k.
km=1m
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
km=m
Whakaraupapatia anō ngā kīanga tau.
mk=m
He hanga arowhānui tō te whārite.
\frac{mk}{m}=\frac{m}{m}
Whakawehea ngā taha e rua ki te m.
k=\frac{m}{m}
Mā te whakawehe ki te m ka wetekia te whakareanga ki te m.
k=1
Whakawehe m ki te m.
1m-km=0
Tangohia te km mai i ngā taha e rua.
-km+m=0
Whakaraupapatia anō ngā kīanga tau.
\left(-k+1\right)m=0
Pahekotia ngā kīanga tau katoa e whai ana i te m.
\left(1-k\right)m=0
He hanga arowhānui tō te whārite.
m=0
Whakawehe 0 ki te 1-k.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}