Aromātai
\frac{13721}{70}\approx 196.014285714
Tauwehe
\frac{13721}{2 \cdot 5 \cdot 7} = 196\frac{1}{70} = 196.0142857142857
Tohaina
Kua tāruatia ki te papatopenga
196-\frac{2}{7}\left(0.2-0.25\right)
Tangohia te 1 i te 1.2, ka 0.2.
196-\frac{2}{7}\left(-0.05\right)
Tangohia te 0.25 i te 0.2, ka -0.05.
196-\frac{2}{7}\left(-\frac{1}{20}\right)
Me tahuri ki tau ā-ira -0.05 ki te hautau -\frac{5}{100}. Whakahekea te hautanga -\frac{5}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
196-\frac{2\left(-1\right)}{7\times 20}
Me whakarea te \frac{2}{7} ki te -\frac{1}{20} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
196-\frac{-2}{140}
Mahia ngā whakarea i roto i te hautanga \frac{2\left(-1\right)}{7\times 20}.
196-\left(-\frac{1}{70}\right)
Whakahekea te hautanga \frac{-2}{140} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
196+\frac{1}{70}
Ko te tauaro o -\frac{1}{70} ko \frac{1}{70}.
\frac{13720}{70}+\frac{1}{70}
Me tahuri te 196 ki te hautau \frac{13720}{70}.
\frac{13720+1}{70}
Tā te mea he rite te tauraro o \frac{13720}{70} me \frac{1}{70}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{13721}{70}
Tāpirihia te 13720 ki te 1, ka 13721.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}