Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

196\sqrt{\frac{212364}{2258}}
Whakareatia te 306 ki te 694, ka 212364.
196\sqrt{\frac{106182}{1129}}
Whakahekea te hautanga \frac{212364}{2258} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
196\times \frac{\sqrt{106182}}{\sqrt{1129}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{106182}{1129}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{106182}}{\sqrt{1129}}.
196\times \frac{3\sqrt{11798}}{\sqrt{1129}}
Tauwehea te 106182=3^{2}\times 11798. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 11798} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{11798}. Tuhia te pūtakerua o te 3^{2}.
196\times \frac{3\sqrt{11798}\sqrt{1129}}{\left(\sqrt{1129}\right)^{2}}
Whakangāwaritia te tauraro o \frac{3\sqrt{11798}}{\sqrt{1129}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{1129}.
196\times \frac{3\sqrt{11798}\sqrt{1129}}{1129}
Ko te pūrua o \sqrt{1129} ko 1129.
196\times \frac{3\sqrt{13319942}}{1129}
Hei whakarea \sqrt{11798} me \sqrt{1129}, whakareatia ngā tau i raro i te pūtake rua.
\frac{196\times 3\sqrt{13319942}}{1129}
Tuhia te 196\times \frac{3\sqrt{13319942}}{1129} hei hautanga kotahi.
\frac{588\sqrt{13319942}}{1129}
Whakareatia te 196 ki te 3, ka 588.