Aromātai
\frac{588\sqrt{13319942}}{1129}\approx 1900.791805549
Tohaina
Kua tāruatia ki te papatopenga
196\sqrt{\frac{212364}{2258}}
Whakareatia te 306 ki te 694, ka 212364.
196\sqrt{\frac{106182}{1129}}
Whakahekea te hautanga \frac{212364}{2258} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
196\times \frac{\sqrt{106182}}{\sqrt{1129}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{106182}{1129}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{106182}}{\sqrt{1129}}.
196\times \frac{3\sqrt{11798}}{\sqrt{1129}}
Tauwehea te 106182=3^{2}\times 11798. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 11798} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{11798}. Tuhia te pūtakerua o te 3^{2}.
196\times \frac{3\sqrt{11798}\sqrt{1129}}{\left(\sqrt{1129}\right)^{2}}
Whakangāwaritia te tauraro o \frac{3\sqrt{11798}}{\sqrt{1129}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{1129}.
196\times \frac{3\sqrt{11798}\sqrt{1129}}{1129}
Ko te pūrua o \sqrt{1129} ko 1129.
196\times \frac{3\sqrt{13319942}}{1129}
Hei whakarea \sqrt{11798} me \sqrt{1129}, whakareatia ngā tau i raro i te pūtake rua.
\frac{196\times 3\sqrt{13319942}}{1129}
Tuhia te 196\times \frac{3\sqrt{13319942}}{1129} hei hautanga kotahi.
\frac{588\sqrt{13319942}}{1129}
Whakareatia te 196 ki te 3, ka 588.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}