Whakaoti mō x
x=-10
x=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
196=3x^{2}+16+8x+4x
Pahekotia te 2x^{2} me x^{2}, ka 3x^{2}.
196=3x^{2}+16+12x
Pahekotia te 8x me 4x, ka 12x.
3x^{2}+16+12x=196
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3x^{2}+16+12x-196=0
Tangohia te 196 mai i ngā taha e rua.
3x^{2}-180+12x=0
Tangohia te 196 i te 16, ka -180.
x^{2}-60+4x=0
Whakawehea ngā taha e rua ki te 3.
x^{2}+4x-60=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=4 ab=1\left(-60\right)=-60
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-60. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,60 -2,30 -3,20 -4,15 -5,12 -6,10
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -60.
-1+60=59 -2+30=28 -3+20=17 -4+15=11 -5+12=7 -6+10=4
Tātaihia te tapeke mō ia takirua.
a=-6 b=10
Ko te otinga te takirua ka hoatu i te tapeke 4.
\left(x^{2}-6x\right)+\left(10x-60\right)
Tuhia anō te x^{2}+4x-60 hei \left(x^{2}-6x\right)+\left(10x-60\right).
x\left(x-6\right)+10\left(x-6\right)
Tauwehea te x i te tuatahi me te 10 i te rōpū tuarua.
\left(x-6\right)\left(x+10\right)
Whakatauwehea atu te kīanga pātahi x-6 mā te whakamahi i te āhuatanga tātai tohatoha.
x=6 x=-10
Hei kimi otinga whārite, me whakaoti te x-6=0 me te x+10=0.
196=3x^{2}+16+8x+4x
Pahekotia te 2x^{2} me x^{2}, ka 3x^{2}.
196=3x^{2}+16+12x
Pahekotia te 8x me 4x, ka 12x.
3x^{2}+16+12x=196
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3x^{2}+16+12x-196=0
Tangohia te 196 mai i ngā taha e rua.
3x^{2}-180+12x=0
Tangohia te 196 i te 16, ka -180.
3x^{2}+12x-180=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-12±\sqrt{12^{2}-4\times 3\left(-180\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 12 mō b, me -180 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 3\left(-180\right)}}{2\times 3}
Pūrua 12.
x=\frac{-12±\sqrt{144-12\left(-180\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-12±\sqrt{144+2160}}{2\times 3}
Whakareatia -12 ki te -180.
x=\frac{-12±\sqrt{2304}}{2\times 3}
Tāpiri 144 ki te 2160.
x=\frac{-12±48}{2\times 3}
Tuhia te pūtakerua o te 2304.
x=\frac{-12±48}{6}
Whakareatia 2 ki te 3.
x=\frac{36}{6}
Nā, me whakaoti te whārite x=\frac{-12±48}{6} ina he tāpiri te ±. Tāpiri -12 ki te 48.
x=6
Whakawehe 36 ki te 6.
x=-\frac{60}{6}
Nā, me whakaoti te whārite x=\frac{-12±48}{6} ina he tango te ±. Tango 48 mai i -12.
x=-10
Whakawehe -60 ki te 6.
x=6 x=-10
Kua oti te whārite te whakatau.
196=3x^{2}+16+8x+4x
Pahekotia te 2x^{2} me x^{2}, ka 3x^{2}.
196=3x^{2}+16+12x
Pahekotia te 8x me 4x, ka 12x.
3x^{2}+16+12x=196
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3x^{2}+12x=196-16
Tangohia te 16 mai i ngā taha e rua.
3x^{2}+12x=180
Tangohia te 16 i te 196, ka 180.
\frac{3x^{2}+12x}{3}=\frac{180}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{12}{3}x=\frac{180}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+4x=\frac{180}{3}
Whakawehe 12 ki te 3.
x^{2}+4x=60
Whakawehe 180 ki te 3.
x^{2}+4x+2^{2}=60+2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+4x+4=60+4
Pūrua 2.
x^{2}+4x+4=64
Tāpiri 60 ki te 4.
\left(x+2\right)^{2}=64
Tauwehea x^{2}+4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{64}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+2=8 x+2=-8
Whakarūnātia.
x=6 x=-10
Me tango 2 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}