195 - 10 \%
Aromātai
\frac{1949}{10}=194.9
Tauwehe
\frac{1949}{2 \cdot 5} = 194\frac{9}{10} = 194.9
Tohaina
Kua tāruatia ki te papatopenga
195-\frac{1}{10}
Whakahekea te hautanga \frac{10}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
\frac{1950}{10}-\frac{1}{10}
Me tahuri te 195 ki te hautau \frac{1950}{10}.
\frac{1950-1}{10}
Tā te mea he rite te tauraro o \frac{1950}{10} me \frac{1}{10}, me tango rāua mā te tango i ō raua taurunga.
\frac{1949}{10}
Tangohia te 1 i te 1950, ka 1949.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}