Whakaoti mō r
r=2\sqrt{6}\approx 4.898979486
r=-2\sqrt{6}\approx -4.898979486
Tohaina
Kua tāruatia ki te papatopenga
192=r^{2}\times 8
Me whakakore te \pi ki ngā taha e rua.
\frac{192}{8}=r^{2}
Whakawehea ngā taha e rua ki te 8.
24=r^{2}
Whakawehea te 192 ki te 8, kia riro ko 24.
r^{2}=24
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
r=2\sqrt{6} r=-2\sqrt{6}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
192=r^{2}\times 8
Me whakakore te \pi ki ngā taha e rua.
\frac{192}{8}=r^{2}
Whakawehea ngā taha e rua ki te 8.
24=r^{2}
Whakawehea te 192 ki te 8, kia riro ko 24.
r^{2}=24
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
r^{2}-24=0
Tangohia te 24 mai i ngā taha e rua.
r=\frac{0±\sqrt{0^{2}-4\left(-24\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\left(-24\right)}}{2}
Pūrua 0.
r=\frac{0±\sqrt{96}}{2}
Whakareatia -4 ki te -24.
r=\frac{0±4\sqrt{6}}{2}
Tuhia te pūtakerua o te 96.
r=2\sqrt{6}
Nā, me whakaoti te whārite r=\frac{0±4\sqrt{6}}{2} ina he tāpiri te ±.
r=-2\sqrt{6}
Nā, me whakaoti te whārite r=\frac{0±4\sqrt{6}}{2} ina he tango te ±.
r=2\sqrt{6} r=-2\sqrt{6}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}