Tīpoka ki ngā ihirangi matua
Whakaoti mō r
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

192=r^{2}\times 8
Me whakakore te \pi ki ngā taha e rua.
\frac{192}{8}=r^{2}
Whakawehea ngā taha e rua ki te 8.
24=r^{2}
Whakawehea te 192 ki te 8, kia riro ko 24.
r^{2}=24
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
r=2\sqrt{6} r=-2\sqrt{6}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
192=r^{2}\times 8
Me whakakore te \pi ki ngā taha e rua.
\frac{192}{8}=r^{2}
Whakawehea ngā taha e rua ki te 8.
24=r^{2}
Whakawehea te 192 ki te 8, kia riro ko 24.
r^{2}=24
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
r^{2}-24=0
Tangohia te 24 mai i ngā taha e rua.
r=\frac{0±\sqrt{0^{2}-4\left(-24\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\left(-24\right)}}{2}
Pūrua 0.
r=\frac{0±\sqrt{96}}{2}
Whakareatia -4 ki te -24.
r=\frac{0±4\sqrt{6}}{2}
Tuhia te pūtakerua o te 96.
r=2\sqrt{6}
Nā, me whakaoti te whārite r=\frac{0±4\sqrt{6}}{2} ina he tāpiri te ±.
r=-2\sqrt{6}
Nā, me whakaoti te whārite r=\frac{0±4\sqrt{6}}{2} ina he tango te ±.
r=2\sqrt{6} r=-2\sqrt{6}
Kua oti te whārite te whakatau.