Aromātai
teka
Tohaina
Kua tāruatia ki te papatopenga
19\leq 0x+0x+0\left(60-x-y\right)\text{ and }0\times 3x+0\times 5x+0\times 2\left(60-x-y\right)\leq 20
Whakareatia te 0 ki te 3, ka 0. Whakareatia te 0 ki te 5, ka 0. Whakareatia te 0 ki te 2, ka 0.
19\leq 0+0x+0\left(60-x-y\right)\text{ and }0\times 3x+0\times 5x+0\times 2\left(60-x-y\right)\leq 20
Ko te tau i whakarea ki te kore ka hua ko te kore.
19\leq 0+0+0\left(60-x-y\right)\text{ and }0\times 3x+0\times 5x+0\times 2\left(60-x-y\right)\leq 20
Ko te tau i whakarea ki te kore ka hua ko te kore.
19\leq 0\left(60-x-y\right)\text{ and }0\times 3x+0\times 5x+0\times 2\left(60-x-y\right)\leq 20
Tāpirihia te 0 ki te 0, ka 0.
19\leq 0\text{ and }0\times 3x+0\times 5x+0\times 2\left(60-x-y\right)\leq 20
Ko te tau i whakarea ki te kore ka hua ko te kore.
\text{false}\text{ and }0\times 3x+0\times 5x+0\times 2\left(60-x-y\right)\leq 20
Whakatauritea te 19 me te 0.
\text{false}\text{ and }0x+0x+0\left(60-x-y\right)\leq 20
Whakareatia te 0 ki te 3, ka 0. Whakareatia te 0 ki te 5, ka 0. Whakareatia te 0 ki te 2, ka 0.
\text{false}\text{ and }0+0x+0\left(60-x-y\right)\leq 20
Ko te tau i whakarea ki te kore ka hua ko te kore.
\text{false}\text{ and }0+0+0\left(60-x-y\right)\leq 20
Ko te tau i whakarea ki te kore ka hua ko te kore.
\text{false}\text{ and }0\left(60-x-y\right)\leq 20
Tāpirihia te 0 ki te 0, ka 0.
\text{false}\text{ and }0\leq 20
Ko te tau i whakarea ki te kore ka hua ko te kore.
\text{false}\text{ and }\text{true}
Whakatauritea te 0 me te 20.
\text{false}
Ko te kōmititanga tōrunga o \text{false} me \text{true} ko \text{false}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}