Aromātai
-\frac{483}{4}=-120.75
Tauwehe
-\frac{483}{4} = -120\frac{3}{4} = -120.75
Tohaina
Kua tāruatia ki te papatopenga
\frac{152+1}{8}-\frac{5\times 4+3}{4}-\frac{9\times 8+1}{8}-125
Whakareatia te 19 ki te 8, ka 152.
\frac{153}{8}-\frac{5\times 4+3}{4}-\frac{9\times 8+1}{8}-125
Tāpirihia te 152 ki te 1, ka 153.
\frac{153}{8}-\frac{20+3}{4}-\frac{9\times 8+1}{8}-125
Whakareatia te 5 ki te 4, ka 20.
\frac{153}{8}-\frac{23}{4}-\frac{9\times 8+1}{8}-125
Tāpirihia te 20 ki te 3, ka 23.
\frac{153}{8}-\frac{46}{8}-\frac{9\times 8+1}{8}-125
Ko te maha noa iti rawa atu o 8 me 4 ko 8. Me tahuri \frac{153}{8} me \frac{23}{4} ki te hautau me te tautūnga 8.
\frac{153-46}{8}-\frac{9\times 8+1}{8}-125
Tā te mea he rite te tauraro o \frac{153}{8} me \frac{46}{8}, me tango rāua mā te tango i ō raua taurunga.
\frac{107}{8}-\frac{9\times 8+1}{8}-125
Tangohia te 46 i te 153, ka 107.
\frac{107}{8}-\frac{72+1}{8}-125
Whakareatia te 9 ki te 8, ka 72.
\frac{107}{8}-\frac{73}{8}-125
Tāpirihia te 72 ki te 1, ka 73.
\frac{107-73}{8}-125
Tā te mea he rite te tauraro o \frac{107}{8} me \frac{73}{8}, me tango rāua mā te tango i ō raua taurunga.
\frac{34}{8}-125
Tangohia te 73 i te 107, ka 34.
\frac{17}{4}-125
Whakahekea te hautanga \frac{34}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{17}{4}-\frac{500}{4}
Me tahuri te 125 ki te hautau \frac{500}{4}.
\frac{17-500}{4}
Tā te mea he rite te tauraro o \frac{17}{4} me \frac{500}{4}, me tango rāua mā te tango i ō raua taurunga.
-\frac{483}{4}
Tangohia te 500 i te 17, ka -483.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}