Whakaoti mō x (complex solution)
x=\frac{-\sqrt{199}i+9}{35}\approx 0.257142857-0.403049599i
x=\frac{9+\sqrt{199}i}{35}\approx 0.257142857+0.403049599i
Graph
Tohaina
Kua tāruatia ki te papatopenga
18x-8-35x^{2}=0
Tangohia te 35x^{2} mai i ngā taha e rua.
-35x^{2}+18x-8=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-18±\sqrt{18^{2}-4\left(-35\right)\left(-8\right)}}{2\left(-35\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -35 mō a, 18 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\left(-35\right)\left(-8\right)}}{2\left(-35\right)}
Pūrua 18.
x=\frac{-18±\sqrt{324+140\left(-8\right)}}{2\left(-35\right)}
Whakareatia -4 ki te -35.
x=\frac{-18±\sqrt{324-1120}}{2\left(-35\right)}
Whakareatia 140 ki te -8.
x=\frac{-18±\sqrt{-796}}{2\left(-35\right)}
Tāpiri 324 ki te -1120.
x=\frac{-18±2\sqrt{199}i}{2\left(-35\right)}
Tuhia te pūtakerua o te -796.
x=\frac{-18±2\sqrt{199}i}{-70}
Whakareatia 2 ki te -35.
x=\frac{-18+2\sqrt{199}i}{-70}
Nā, me whakaoti te whārite x=\frac{-18±2\sqrt{199}i}{-70} ina he tāpiri te ±. Tāpiri -18 ki te 2i\sqrt{199}.
x=\frac{-\sqrt{199}i+9}{35}
Whakawehe -18+2i\sqrt{199} ki te -70.
x=\frac{-2\sqrt{199}i-18}{-70}
Nā, me whakaoti te whārite x=\frac{-18±2\sqrt{199}i}{-70} ina he tango te ±. Tango 2i\sqrt{199} mai i -18.
x=\frac{9+\sqrt{199}i}{35}
Whakawehe -18-2i\sqrt{199} ki te -70.
x=\frac{-\sqrt{199}i+9}{35} x=\frac{9+\sqrt{199}i}{35}
Kua oti te whārite te whakatau.
18x-8-35x^{2}=0
Tangohia te 35x^{2} mai i ngā taha e rua.
18x-35x^{2}=8
Me tāpiri te 8 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-35x^{2}+18x=8
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-35x^{2}+18x}{-35}=\frac{8}{-35}
Whakawehea ngā taha e rua ki te -35.
x^{2}+\frac{18}{-35}x=\frac{8}{-35}
Mā te whakawehe ki te -35 ka wetekia te whakareanga ki te -35.
x^{2}-\frac{18}{35}x=\frac{8}{-35}
Whakawehe 18 ki te -35.
x^{2}-\frac{18}{35}x=-\frac{8}{35}
Whakawehe 8 ki te -35.
x^{2}-\frac{18}{35}x+\left(-\frac{9}{35}\right)^{2}=-\frac{8}{35}+\left(-\frac{9}{35}\right)^{2}
Whakawehea te -\frac{18}{35}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{35}. Nā, tāpiria te pūrua o te -\frac{9}{35} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{18}{35}x+\frac{81}{1225}=-\frac{8}{35}+\frac{81}{1225}
Pūruatia -\frac{9}{35} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{18}{35}x+\frac{81}{1225}=-\frac{199}{1225}
Tāpiri -\frac{8}{35} ki te \frac{81}{1225} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{9}{35}\right)^{2}=-\frac{199}{1225}
Tauwehea x^{2}-\frac{18}{35}x+\frac{81}{1225}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{35}\right)^{2}}=\sqrt{-\frac{199}{1225}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{9}{35}=\frac{\sqrt{199}i}{35} x-\frac{9}{35}=-\frac{\sqrt{199}i}{35}
Whakarūnātia.
x=\frac{9+\sqrt{199}i}{35} x=\frac{-\sqrt{199}i+9}{35}
Me tāpiri \frac{9}{35} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}