Whakaoti mō x
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
18x+14x-14=1-15\left(3x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 14 ki te x-1.
32x-14=1-15\left(3x+1\right)
Pahekotia te 18x me 14x, ka 32x.
32x-14=1-45x-15
Whakamahia te āhuatanga tohatoha hei whakarea te -15 ki te 3x+1.
32x-14=-14-45x
Tangohia te 15 i te 1, ka -14.
32x-14+45x=-14
Me tāpiri te 45x ki ngā taha e rua.
77x-14=-14
Pahekotia te 32x me 45x, ka 77x.
77x=-14+14
Me tāpiri te 14 ki ngā taha e rua.
77x=0
Tāpirihia te -14 ki te 14, ka 0.
x=0
He ōrite te hua o ngā tau e rua ki 0 ina 0 tētahi o rāua te iti rawa. Tātemea kāore te 77 e ōrite ki 0, me ōrite pū te x ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}