Whakaoti mō x (complex solution)
x=-\frac{10\sqrt{934219}i}{143}\approx -0-67.590912618i
x=\frac{10\sqrt{934219}i}{143}\approx 67.590912618i
Graph
Tohaina
Kua tāruatia ki te papatopenga
370\times 10^{6}=286\times 400\left(950-\frac{x^{2}}{2}\right)
Whakareatia ngā taha e rua o te whārite ki te 2.
370\times 1000000=286\times 400\left(950-\frac{x^{2}}{2}\right)
Tātaihia te 10 mā te pū o 6, kia riro ko 1000000.
370000000=286\times 400\left(950-\frac{x^{2}}{2}\right)
Whakareatia te 370 ki te 1000000, ka 370000000.
370000000=114400\left(950-\frac{x^{2}}{2}\right)
Whakareatia te 286 ki te 400, ka 114400.
370000000=108680000+114400\left(-\frac{x^{2}}{2}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 114400 ki te 950-\frac{x^{2}}{2}.
370000000=108680000-57200x^{2}
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 114400 me te 2.
108680000-57200x^{2}=370000000
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-57200x^{2}=370000000-108680000
Tangohia te 108680000 mai i ngā taha e rua.
-57200x^{2}=261320000
Tangohia te 108680000 i te 370000000, ka 261320000.
x^{2}=\frac{261320000}{-57200}
Whakawehea ngā taha e rua ki te -57200.
x^{2}=-\frac{653300}{143}
Whakahekea te hautanga \frac{261320000}{-57200} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 400.
x=\frac{10\sqrt{934219}i}{143} x=-\frac{10\sqrt{934219}i}{143}
Kua oti te whārite te whakatau.
370\times 10^{6}=286\times 400\left(950-\frac{x^{2}}{2}\right)
Whakareatia ngā taha e rua o te whārite ki te 2.
370\times 1000000=286\times 400\left(950-\frac{x^{2}}{2}\right)
Tātaihia te 10 mā te pū o 6, kia riro ko 1000000.
370000000=286\times 400\left(950-\frac{x^{2}}{2}\right)
Whakareatia te 370 ki te 1000000, ka 370000000.
370000000=114400\left(950-\frac{x^{2}}{2}\right)
Whakareatia te 286 ki te 400, ka 114400.
370000000=108680000+114400\left(-\frac{x^{2}}{2}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 114400 ki te 950-\frac{x^{2}}{2}.
370000000=108680000-57200x^{2}
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 114400 me te 2.
108680000-57200x^{2}=370000000
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
108680000-57200x^{2}-370000000=0
Tangohia te 370000000 mai i ngā taha e rua.
-261320000-57200x^{2}=0
Tangohia te 370000000 i te 108680000, ka -261320000.
-57200x^{2}-261320000=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-57200\right)\left(-261320000\right)}}{2\left(-57200\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -57200 mō a, 0 mō b, me -261320000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-57200\right)\left(-261320000\right)}}{2\left(-57200\right)}
Pūrua 0.
x=\frac{0±\sqrt{228800\left(-261320000\right)}}{2\left(-57200\right)}
Whakareatia -4 ki te -57200.
x=\frac{0±\sqrt{-59790016000000}}{2\left(-57200\right)}
Whakareatia 228800 ki te -261320000.
x=\frac{0±8000\sqrt{934219}i}{2\left(-57200\right)}
Tuhia te pūtakerua o te -59790016000000.
x=\frac{0±8000\sqrt{934219}i}{-114400}
Whakareatia 2 ki te -57200.
x=-\frac{10\sqrt{934219}i}{143}
Nā, me whakaoti te whārite x=\frac{0±8000\sqrt{934219}i}{-114400} ina he tāpiri te ±.
x=\frac{10\sqrt{934219}i}{143}
Nā, me whakaoti te whārite x=\frac{0±8000\sqrt{934219}i}{-114400} ina he tango te ±.
x=-\frac{10\sqrt{934219}i}{143} x=\frac{10\sqrt{934219}i}{143}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}