Aromātai
72\left(x\left(200-x\right)+10000\right)
Whakaroha
720000+14400x-72x^{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(21600+180\left(-\frac{3}{5}\right)x\right)x+60\left(12000-\left(120-\frac{3}{5}x\right)x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 180 ki te 120-\frac{3}{5}x.
\left(21600+\frac{180\left(-3\right)}{5}x\right)x+60\left(12000-\left(120-\frac{3}{5}x\right)x\right)
Tuhia te 180\left(-\frac{3}{5}\right) hei hautanga kotahi.
\left(21600+\frac{-540}{5}x\right)x+60\left(12000-\left(120-\frac{3}{5}x\right)x\right)
Whakareatia te 180 ki te -3, ka -540.
\left(21600-108x\right)x+60\left(12000-\left(120-\frac{3}{5}x\right)x\right)
Whakawehea te -540 ki te 5, kia riro ko -108.
21600x-108x^{2}+60\left(12000-\left(120-\frac{3}{5}x\right)x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 21600-108x ki te x.
21600x-108x^{2}+60\left(12000-\left(120x-\frac{3}{5}xx\right)\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 120-\frac{3}{5}x ki te x.
21600x-108x^{2}+60\left(12000-\left(120x-\frac{3}{5}x^{2}\right)\right)
Whakareatia te x ki te x, ka x^{2}.
21600x-108x^{2}+60\left(12000-120x-\left(-\frac{3}{5}x^{2}\right)\right)
Hei kimi i te tauaro o 120x-\frac{3}{5}x^{2}, kimihia te tauaro o ia taurangi.
21600x-108x^{2}+60\left(12000-120x+\frac{3}{5}x^{2}\right)
Ko te tauaro o -\frac{3}{5}x^{2} ko \frac{3}{5}x^{2}.
21600x-108x^{2}+720000-7200x+60\times \frac{3}{5}x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 60 ki te 12000-120x+\frac{3}{5}x^{2}.
21600x-108x^{2}+720000-7200x+\frac{60\times 3}{5}x^{2}
Tuhia te 60\times \frac{3}{5} hei hautanga kotahi.
21600x-108x^{2}+720000-7200x+\frac{180}{5}x^{2}
Whakareatia te 60 ki te 3, ka 180.
21600x-108x^{2}+720000-7200x+36x^{2}
Whakawehea te 180 ki te 5, kia riro ko 36.
14400x-108x^{2}+720000+36x^{2}
Pahekotia te 21600x me -7200x, ka 14400x.
14400x-72x^{2}+720000
Pahekotia te -108x^{2} me 36x^{2}, ka -72x^{2}.
\left(21600+180\left(-\frac{3}{5}\right)x\right)x+60\left(12000-\left(120-\frac{3}{5}x\right)x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 180 ki te 120-\frac{3}{5}x.
\left(21600+\frac{180\left(-3\right)}{5}x\right)x+60\left(12000-\left(120-\frac{3}{5}x\right)x\right)
Tuhia te 180\left(-\frac{3}{5}\right) hei hautanga kotahi.
\left(21600+\frac{-540}{5}x\right)x+60\left(12000-\left(120-\frac{3}{5}x\right)x\right)
Whakareatia te 180 ki te -3, ka -540.
\left(21600-108x\right)x+60\left(12000-\left(120-\frac{3}{5}x\right)x\right)
Whakawehea te -540 ki te 5, kia riro ko -108.
21600x-108x^{2}+60\left(12000-\left(120-\frac{3}{5}x\right)x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 21600-108x ki te x.
21600x-108x^{2}+60\left(12000-\left(120x-\frac{3}{5}xx\right)\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 120-\frac{3}{5}x ki te x.
21600x-108x^{2}+60\left(12000-\left(120x-\frac{3}{5}x^{2}\right)\right)
Whakareatia te x ki te x, ka x^{2}.
21600x-108x^{2}+60\left(12000-120x-\left(-\frac{3}{5}x^{2}\right)\right)
Hei kimi i te tauaro o 120x-\frac{3}{5}x^{2}, kimihia te tauaro o ia taurangi.
21600x-108x^{2}+60\left(12000-120x+\frac{3}{5}x^{2}\right)
Ko te tauaro o -\frac{3}{5}x^{2} ko \frac{3}{5}x^{2}.
21600x-108x^{2}+720000-7200x+60\times \frac{3}{5}x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 60 ki te 12000-120x+\frac{3}{5}x^{2}.
21600x-108x^{2}+720000-7200x+\frac{60\times 3}{5}x^{2}
Tuhia te 60\times \frac{3}{5} hei hautanga kotahi.
21600x-108x^{2}+720000-7200x+\frac{180}{5}x^{2}
Whakareatia te 60 ki te 3, ka 180.
21600x-108x^{2}+720000-7200x+36x^{2}
Whakawehea te 180 ki te 5, kia riro ko 36.
14400x-108x^{2}+720000+36x^{2}
Pahekotia te 21600x me -7200x, ka 14400x.
14400x-72x^{2}+720000
Pahekotia te -108x^{2} me 36x^{2}, ka -72x^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}