Whakaoti mō x
x=-\frac{4}{45}\approx -0.088888889
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
180 x = 2 ( 30 \div 3 ) + 17 - 5 \cdot 11 + 2 \div 1
Tohaina
Kua tāruatia ki te papatopenga
180x=2\times 10+17-5\times 11+\frac{2}{1}
Whakawehea te 30 ki te 3, kia riro ko 10.
180x=20+17-5\times 11+\frac{2}{1}
Whakareatia te 2 ki te 10, ka 20.
180x=37-5\times 11+\frac{2}{1}
Tāpirihia te 20 ki te 17, ka 37.
180x=37-55+\frac{2}{1}
Whakareatia te 5 ki te 11, ka 55.
180x=-18+\frac{2}{1}
Tangohia te 55 i te 37, ka -18.
180x=-18+2
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
180x=-16
Tāpirihia te -18 ki te 2, ka -16.
x=\frac{-16}{180}
Whakawehea ngā taha e rua ki te 180.
x=-\frac{4}{45}
Whakahekea te hautanga \frac{-16}{180} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}