Whakaoti mō x
x=24
Graph
Tohaina
Kua tāruatia ki te papatopenga
360-6x+3x+2x+4x+288=720
Whakareatia ngā taha e rua o te whārite ki te 2.
360-3x+2x+4x+288=720
Pahekotia te -6x me 3x, ka -3x.
360-x+4x+288=720
Pahekotia te -3x me 2x, ka -x.
360+3x+288=720
Pahekotia te -x me 4x, ka 3x.
648+3x=720
Tāpirihia te 360 ki te 288, ka 648.
3x=720-648
Tangohia te 648 mai i ngā taha e rua.
3x=72
Tangohia te 648 i te 720, ka 72.
x=\frac{72}{3}
Whakawehea ngā taha e rua ki te 3.
x=24
Whakawehea te 72 ki te 3, kia riro ko 24.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}