Whakaoti mō x
x=\sqrt{2}+2\approx 3.414213562
x=2-\sqrt{2}\approx 0.585786438
Graph
Tohaina
Kua tāruatia ki te papatopenga
180\left(x-2\right)x-180\left(x-2\right)=180x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
\left(180x-360\right)x-180\left(x-2\right)=180x
Whakamahia te āhuatanga tohatoha hei whakarea te 180 ki te x-2.
180x^{2}-360x-180\left(x-2\right)=180x
Whakamahia te āhuatanga tohatoha hei whakarea te 180x-360 ki te x.
180x^{2}-360x-180x+360=180x
Whakamahia te āhuatanga tohatoha hei whakarea te -180 ki te x-2.
180x^{2}-540x+360=180x
Pahekotia te -360x me -180x, ka -540x.
180x^{2}-540x+360-180x=0
Tangohia te 180x mai i ngā taha e rua.
180x^{2}-720x+360=0
Pahekotia te -540x me -180x, ka -720x.
x=\frac{-\left(-720\right)±\sqrt{\left(-720\right)^{2}-4\times 180\times 360}}{2\times 180}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 180 mō a, -720 mō b, me 360 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-720\right)±\sqrt{518400-4\times 180\times 360}}{2\times 180}
Pūrua -720.
x=\frac{-\left(-720\right)±\sqrt{518400-720\times 360}}{2\times 180}
Whakareatia -4 ki te 180.
x=\frac{-\left(-720\right)±\sqrt{518400-259200}}{2\times 180}
Whakareatia -720 ki te 360.
x=\frac{-\left(-720\right)±\sqrt{259200}}{2\times 180}
Tāpiri 518400 ki te -259200.
x=\frac{-\left(-720\right)±360\sqrt{2}}{2\times 180}
Tuhia te pūtakerua o te 259200.
x=\frac{720±360\sqrt{2}}{2\times 180}
Ko te tauaro o -720 ko 720.
x=\frac{720±360\sqrt{2}}{360}
Whakareatia 2 ki te 180.
x=\frac{360\sqrt{2}+720}{360}
Nā, me whakaoti te whārite x=\frac{720±360\sqrt{2}}{360} ina he tāpiri te ±. Tāpiri 720 ki te 360\sqrt{2}.
x=\sqrt{2}+2
Whakawehe 720+360\sqrt{2} ki te 360.
x=\frac{720-360\sqrt{2}}{360}
Nā, me whakaoti te whārite x=\frac{720±360\sqrt{2}}{360} ina he tango te ±. Tango 360\sqrt{2} mai i 720.
x=2-\sqrt{2}
Whakawehe 720-360\sqrt{2} ki te 360.
x=\sqrt{2}+2 x=2-\sqrt{2}
Kua oti te whārite te whakatau.
180\left(x-2\right)x-180\left(x-2\right)=180x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
\left(180x-360\right)x-180\left(x-2\right)=180x
Whakamahia te āhuatanga tohatoha hei whakarea te 180 ki te x-2.
180x^{2}-360x-180\left(x-2\right)=180x
Whakamahia te āhuatanga tohatoha hei whakarea te 180x-360 ki te x.
180x^{2}-360x-180x+360=180x
Whakamahia te āhuatanga tohatoha hei whakarea te -180 ki te x-2.
180x^{2}-540x+360=180x
Pahekotia te -360x me -180x, ka -540x.
180x^{2}-540x+360-180x=0
Tangohia te 180x mai i ngā taha e rua.
180x^{2}-720x+360=0
Pahekotia te -540x me -180x, ka -720x.
180x^{2}-720x=-360
Tangohia te 360 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{180x^{2}-720x}{180}=-\frac{360}{180}
Whakawehea ngā taha e rua ki te 180.
x^{2}+\left(-\frac{720}{180}\right)x=-\frac{360}{180}
Mā te whakawehe ki te 180 ka wetekia te whakareanga ki te 180.
x^{2}-4x=-\frac{360}{180}
Whakawehe -720 ki te 180.
x^{2}-4x=-2
Whakawehe -360 ki te 180.
x^{2}-4x+\left(-2\right)^{2}=-2+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=-2+4
Pūrua -2.
x^{2}-4x+4=2
Tāpiri -2 ki te 4.
\left(x-2\right)^{2}=2
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=\sqrt{2} x-2=-\sqrt{2}
Whakarūnātia.
x=\sqrt{2}+2 x=2-\sqrt{2}
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}