Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+x^{2}=180
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3x+x^{2}-180=0
Tangohia te 180 mai i ngā taha e rua.
x^{2}+3x-180=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=3 ab=-180
Hei whakaoti i te whārite, whakatauwehea te x^{2}+3x-180 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,180 -2,90 -3,60 -4,45 -5,36 -6,30 -9,20 -10,18 -12,15
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -180.
-1+180=179 -2+90=88 -3+60=57 -4+45=41 -5+36=31 -6+30=24 -9+20=11 -10+18=8 -12+15=3
Tātaihia te tapeke mō ia takirua.
a=-12 b=15
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(x-12\right)\left(x+15\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=12 x=-15
Hei kimi otinga whārite, me whakaoti te x-12=0 me te x+15=0.
3x+x^{2}=180
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3x+x^{2}-180=0
Tangohia te 180 mai i ngā taha e rua.
x^{2}+3x-180=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=3 ab=1\left(-180\right)=-180
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-180. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,180 -2,90 -3,60 -4,45 -5,36 -6,30 -9,20 -10,18 -12,15
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -180.
-1+180=179 -2+90=88 -3+60=57 -4+45=41 -5+36=31 -6+30=24 -9+20=11 -10+18=8 -12+15=3
Tātaihia te tapeke mō ia takirua.
a=-12 b=15
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(x^{2}-12x\right)+\left(15x-180\right)
Tuhia anō te x^{2}+3x-180 hei \left(x^{2}-12x\right)+\left(15x-180\right).
x\left(x-12\right)+15\left(x-12\right)
Tauwehea te x i te tuatahi me te 15 i te rōpū tuarua.
\left(x-12\right)\left(x+15\right)
Whakatauwehea atu te kīanga pātahi x-12 mā te whakamahi i te āhuatanga tātai tohatoha.
x=12 x=-15
Hei kimi otinga whārite, me whakaoti te x-12=0 me te x+15=0.
3x+x^{2}=180
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3x+x^{2}-180=0
Tangohia te 180 mai i ngā taha e rua.
x^{2}+3x-180=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{3^{2}-4\left(-180\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 3 mō b, me -180 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-180\right)}}{2}
Pūrua 3.
x=\frac{-3±\sqrt{9+720}}{2}
Whakareatia -4 ki te -180.
x=\frac{-3±\sqrt{729}}{2}
Tāpiri 9 ki te 720.
x=\frac{-3±27}{2}
Tuhia te pūtakerua o te 729.
x=\frac{24}{2}
Nā, me whakaoti te whārite x=\frac{-3±27}{2} ina he tāpiri te ±. Tāpiri -3 ki te 27.
x=12
Whakawehe 24 ki te 2.
x=-\frac{30}{2}
Nā, me whakaoti te whārite x=\frac{-3±27}{2} ina he tango te ±. Tango 27 mai i -3.
x=-15
Whakawehe -30 ki te 2.
x=12 x=-15
Kua oti te whārite te whakatau.
3x+x^{2}=180
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}+3x=180
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=180+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+3x+\frac{9}{4}=180+\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+3x+\frac{9}{4}=\frac{729}{4}
Tāpiri 180 ki te \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{729}{4}
Tauwehea x^{2}+3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{729}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{2}=\frac{27}{2} x+\frac{3}{2}=-\frac{27}{2}
Whakarūnātia.
x=12 x=-15
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.