Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
18.75=\frac{10}{256}\times 100
Whakarohaina te \frac{1}{25.6} mā te whakarea i te taurunga me te tauraro ki te 10.
18.75=\frac{5}{128}\times 100
Whakahekea te hautanga \frac{10}{256} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
18.75=\frac{5\times 100}{128}
Tuhia te \frac{5}{128}\times 100 hei hautanga kotahi.
18.75=\frac{500}{128}
Whakareatia te 5 ki te 100, ka 500.
18.75=\frac{125}{32}
Whakahekea te hautanga \frac{500}{128} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{75}{4}=\frac{125}{32}
Me tahuri ki tau ā-ira 18.75 ki te hautau \frac{1875}{100}. Whakahekea te hautanga \frac{1875}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{600}{32}=\frac{125}{32}
Ko te maha noa iti rawa atu o 4 me 32 ko 32. Me tahuri \frac{75}{4} me \frac{125}{32} ki te hautau me te tautūnga 32.
\text{false}
Whakatauritea te \frac{600}{32} me te \frac{125}{32}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}