Whakaoti mō x
x=-9
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{x^{2}+144}=42-\left(18-x\right)
Me tango 18-x mai i ngā taha e rua o te whārite.
\sqrt{x^{2}+144}=42-18+x
Hei kimi i te tauaro o 18-x, kimihia te tauaro o ia taurangi.
\sqrt{x^{2}+144}=24+x
Tangohia te 18 i te 42, ka 24.
\left(\sqrt{x^{2}+144}\right)^{2}=\left(24+x\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}+144=\left(24+x\right)^{2}
Tātaihia te \sqrt{x^{2}+144} mā te pū o 2, kia riro ko x^{2}+144.
x^{2}+144=576+48x+x^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(24+x\right)^{2}.
x^{2}+144-48x=576+x^{2}
Tangohia te 48x mai i ngā taha e rua.
x^{2}+144-48x-x^{2}=576
Tangohia te x^{2} mai i ngā taha e rua.
144-48x=576
Pahekotia te x^{2} me -x^{2}, ka 0.
-48x=576-144
Tangohia te 144 mai i ngā taha e rua.
-48x=432
Tangohia te 144 i te 576, ka 432.
x=\frac{432}{-48}
Whakawehea ngā taha e rua ki te -48.
x=-9
Whakawehea te 432 ki te -48, kia riro ko -9.
18-\left(-9\right)+\sqrt{\left(-9\right)^{2}+144}=42
Whakakapia te -9 mō te x i te whārite 18-x+\sqrt{x^{2}+144}=42.
42=42
Whakarūnātia. Ko te uara x=-9 kua ngata te whārite.
x=-9
Ko te whārite \sqrt{x^{2}+144}=x+24 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}