18-4 \% -3 \% -10 \% -15 \%
Aromātai
\frac{442}{25}=17.68
Tauwehe
\frac{2 \cdot 13 \cdot 17}{5 ^ {2}} = 17\frac{17}{25} = 17.68
Tohaina
Kua tāruatia ki te papatopenga
18-\frac{1}{25}-\frac{3}{100}-\frac{10}{100}-\frac{15}{100}
Whakahekea te hautanga \frac{4}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{450}{25}-\frac{1}{25}-\frac{3}{100}-\frac{10}{100}-\frac{15}{100}
Me tahuri te 18 ki te hautau \frac{450}{25}.
\frac{450-1}{25}-\frac{3}{100}-\frac{10}{100}-\frac{15}{100}
Tā te mea he rite te tauraro o \frac{450}{25} me \frac{1}{25}, me tango rāua mā te tango i ō raua taurunga.
\frac{449}{25}-\frac{3}{100}-\frac{10}{100}-\frac{15}{100}
Tangohia te 1 i te 450, ka 449.
\frac{1796}{100}-\frac{3}{100}-\frac{10}{100}-\frac{15}{100}
Ko te maha noa iti rawa atu o 25 me 100 ko 100. Me tahuri \frac{449}{25} me \frac{3}{100} ki te hautau me te tautūnga 100.
\frac{1796-3}{100}-\frac{10}{100}-\frac{15}{100}
Tā te mea he rite te tauraro o \frac{1796}{100} me \frac{3}{100}, me tango rāua mā te tango i ō raua taurunga.
\frac{1793}{100}-\frac{10}{100}-\frac{15}{100}
Tangohia te 3 i te 1796, ka 1793.
\frac{1793-10}{100}-\frac{15}{100}
Tā te mea he rite te tauraro o \frac{1793}{100} me \frac{10}{100}, me tango rāua mā te tango i ō raua taurunga.
\frac{1783}{100}-\frac{15}{100}
Tangohia te 10 i te 1793, ka 1783.
\frac{1783-15}{100}
Tā te mea he rite te tauraro o \frac{1783}{100} me \frac{15}{100}, me tango rāua mā te tango i ō raua taurunga.
\frac{1768}{100}
Tangohia te 15 i te 1783, ka 1768.
\frac{442}{25}
Whakahekea te hautanga \frac{1768}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}