Whakaoti mō x
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
18-x-3-2x=4+x-5
Hei kimi i te tauaro o x+3, kimihia te tauaro o ia taurangi.
15-x-2x=4+x-5
Tangohia te 3 i te 18, ka 15.
15-3x=4+x-5
Pahekotia te -x me -2x, ka -3x.
15-3x=-1+x
Tangohia te 5 i te 4, ka -1.
15-3x-x=-1
Tangohia te x mai i ngā taha e rua.
15-4x=-1
Pahekotia te -3x me -x, ka -4x.
-4x=-1-15
Tangohia te 15 mai i ngā taha e rua.
-4x=-16
Tangohia te 15 i te -1, ka -16.
x=\frac{-16}{-4}
Whakawehea ngā taha e rua ki te -4.
x=4
Whakawehea te -16 ki te -4, kia riro ko 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}