Tauwehe
\left(6x-5\right)\left(3x+8\right)
Aromātai
\left(6x-5\right)\left(3x+8\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
18x^{2}+33x-40
Whakarea ka paheko i ngā kīanga tau ōrite.
a+b=33 ab=18\left(-40\right)=-720
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 18x^{2}+ax+bx-40. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,720 -2,360 -3,240 -4,180 -5,144 -6,120 -8,90 -9,80 -10,72 -12,60 -15,48 -16,45 -18,40 -20,36 -24,30
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -720.
-1+720=719 -2+360=358 -3+240=237 -4+180=176 -5+144=139 -6+120=114 -8+90=82 -9+80=71 -10+72=62 -12+60=48 -15+48=33 -16+45=29 -18+40=22 -20+36=16 -24+30=6
Tātaihia te tapeke mō ia takirua.
a=-15 b=48
Ko te otinga te takirua ka hoatu i te tapeke 33.
\left(18x^{2}-15x\right)+\left(48x-40\right)
Tuhia anō te 18x^{2}+33x-40 hei \left(18x^{2}-15x\right)+\left(48x-40\right).
3x\left(6x-5\right)+8\left(6x-5\right)
Tauwehea te 3x i te tuatahi me te 8 i te rōpū tuarua.
\left(6x-5\right)\left(3x+8\right)
Whakatauwehea atu te kīanga pātahi 6x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
18x^{2}+33x-40
Pahekotia te -15x me 48x, ka 33x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}