Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

18x^{2}+24x+7=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-24±\sqrt{24^{2}-4\times 18\times 7}}{2\times 18}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-24±\sqrt{576-4\times 18\times 7}}{2\times 18}
Pūrua 24.
x=\frac{-24±\sqrt{576-72\times 7}}{2\times 18}
Whakareatia -4 ki te 18.
x=\frac{-24±\sqrt{576-504}}{2\times 18}
Whakareatia -72 ki te 7.
x=\frac{-24±\sqrt{72}}{2\times 18}
Tāpiri 576 ki te -504.
x=\frac{-24±6\sqrt{2}}{2\times 18}
Tuhia te pūtakerua o te 72.
x=\frac{-24±6\sqrt{2}}{36}
Whakareatia 2 ki te 18.
x=\frac{6\sqrt{2}-24}{36}
Nā, me whakaoti te whārite x=\frac{-24±6\sqrt{2}}{36} ina he tāpiri te ±. Tāpiri -24 ki te 6\sqrt{2}.
x=\frac{\sqrt{2}}{6}-\frac{2}{3}
Whakawehe -24+6\sqrt{2} ki te 36.
x=\frac{-6\sqrt{2}-24}{36}
Nā, me whakaoti te whārite x=\frac{-24±6\sqrt{2}}{36} ina he tango te ±. Tango 6\sqrt{2} mai i -24.
x=-\frac{\sqrt{2}}{6}-\frac{2}{3}
Whakawehe -24-6\sqrt{2} ki te 36.
18x^{2}+24x+7=18\left(x-\left(\frac{\sqrt{2}}{6}-\frac{2}{3}\right)\right)\left(x-\left(-\frac{\sqrt{2}}{6}-\frac{2}{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{2}{3}+\frac{\sqrt{2}}{6} mō te x_{1} me te -\frac{2}{3}-\frac{\sqrt{2}}{6} mō te x_{2}.