Whakaoti mō x
x=\frac{2\sqrt{5}}{5}\approx 0.894427191
Graph
Tohaina
Kua tāruatia ki te papatopenga
18x=36\sqrt{1-x^{2}}
Me tango 0 mai i ngā taha e rua o te whārite.
18x+0=36\sqrt{1-x^{2}}
Ko te tau i whakarea ki te kore ka hua ko te kore.
18x=36\sqrt{1-x^{2}}
Ko te tau i tāpiria he kore ka hua koia tonu.
\left(18x\right)^{2}=\left(36\sqrt{1-x^{2}}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
18^{2}x^{2}=\left(36\sqrt{1-x^{2}}\right)^{2}
Whakarohaina te \left(18x\right)^{2}.
324x^{2}=\left(36\sqrt{1-x^{2}}\right)^{2}
Tātaihia te 18 mā te pū o 2, kia riro ko 324.
324x^{2}=36^{2}\left(\sqrt{1-x^{2}}\right)^{2}
Whakarohaina te \left(36\sqrt{1-x^{2}}\right)^{2}.
324x^{2}=1296\left(\sqrt{1-x^{2}}\right)^{2}
Tātaihia te 36 mā te pū o 2, kia riro ko 1296.
324x^{2}=1296\left(1-x^{2}\right)
Tātaihia te \sqrt{1-x^{2}} mā te pū o 2, kia riro ko 1-x^{2}.
324x^{2}=1296-1296x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 1296 ki te 1-x^{2}.
324x^{2}+1296x^{2}=1296
Me tāpiri te 1296x^{2} ki ngā taha e rua.
1620x^{2}=1296
Pahekotia te 324x^{2} me 1296x^{2}, ka 1620x^{2}.
x^{2}=\frac{1296}{1620}
Whakawehea ngā taha e rua ki te 1620.
x^{2}=\frac{4}{5}
Whakahekea te hautanga \frac{1296}{1620} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 324.
x=\frac{2\sqrt{5}}{5} x=-\frac{2\sqrt{5}}{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
18\times \frac{2\sqrt{5}}{5}=0\times \frac{2\sqrt{5}}{5}+36\sqrt{1-\left(\frac{2\sqrt{5}}{5}\right)^{2}}
Whakakapia te \frac{2\sqrt{5}}{5} mō te x i te whārite 18x=0x+36\sqrt{1-x^{2}}.
\frac{36}{5}\times 5^{\frac{1}{2}}=\frac{36}{5}\times 5^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\frac{2\sqrt{5}}{5} kua ngata te whārite.
18\left(-\frac{2\sqrt{5}}{5}\right)=0\left(-\frac{2\sqrt{5}}{5}\right)+36\sqrt{1-\left(-\frac{2\sqrt{5}}{5}\right)^{2}}
Whakakapia te -\frac{2\sqrt{5}}{5} mō te x i te whārite 18x=0x+36\sqrt{1-x^{2}}.
-\frac{36}{5}\times 5^{\frac{1}{2}}=\frac{36}{5}\times 5^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=-\frac{2\sqrt{5}}{5} kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=\frac{2\sqrt{5}}{5}
Ko te whārite 18x=36\sqrt{1-x^{2}} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}