Tauwehe
3\left(3v-2\right)\left(2v+5\right)
Aromātai
18v^{2}+33v-30
Tohaina
Kua tāruatia ki te papatopenga
3\left(6v^{2}+11v-10\right)
Tauwehea te 3.
a+b=11 ab=6\left(-10\right)=-60
Whakaarohia te 6v^{2}+11v-10. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 6v^{2}+av+bv-10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,60 -2,30 -3,20 -4,15 -5,12 -6,10
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -60.
-1+60=59 -2+30=28 -3+20=17 -4+15=11 -5+12=7 -6+10=4
Tātaihia te tapeke mō ia takirua.
a=-4 b=15
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(6v^{2}-4v\right)+\left(15v-10\right)
Tuhia anō te 6v^{2}+11v-10 hei \left(6v^{2}-4v\right)+\left(15v-10\right).
2v\left(3v-2\right)+5\left(3v-2\right)
Tauwehea te 2v i te tuatahi me te 5 i te rōpū tuarua.
\left(3v-2\right)\left(2v+5\right)
Whakatauwehea atu te kīanga pātahi 3v-2 mā te whakamahi i te āhuatanga tātai tohatoha.
3\left(3v-2\right)\left(2v+5\right)
Me tuhi anō te kīanga whakatauwehe katoa.
18v^{2}+33v-30=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
v=\frac{-33±\sqrt{33^{2}-4\times 18\left(-30\right)}}{2\times 18}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
v=\frac{-33±\sqrt{1089-4\times 18\left(-30\right)}}{2\times 18}
Pūrua 33.
v=\frac{-33±\sqrt{1089-72\left(-30\right)}}{2\times 18}
Whakareatia -4 ki te 18.
v=\frac{-33±\sqrt{1089+2160}}{2\times 18}
Whakareatia -72 ki te -30.
v=\frac{-33±\sqrt{3249}}{2\times 18}
Tāpiri 1089 ki te 2160.
v=\frac{-33±57}{2\times 18}
Tuhia te pūtakerua o te 3249.
v=\frac{-33±57}{36}
Whakareatia 2 ki te 18.
v=\frac{24}{36}
Nā, me whakaoti te whārite v=\frac{-33±57}{36} ina he tāpiri te ±. Tāpiri -33 ki te 57.
v=\frac{2}{3}
Whakahekea te hautanga \frac{24}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
v=-\frac{90}{36}
Nā, me whakaoti te whārite v=\frac{-33±57}{36} ina he tango te ±. Tango 57 mai i -33.
v=-\frac{5}{2}
Whakahekea te hautanga \frac{-90}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 18.
18v^{2}+33v-30=18\left(v-\frac{2}{3}\right)\left(v-\left(-\frac{5}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{2}{3} mō te x_{1} me te -\frac{5}{2} mō te x_{2}.
18v^{2}+33v-30=18\left(v-\frac{2}{3}\right)\left(v+\frac{5}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
18v^{2}+33v-30=18\times \frac{3v-2}{3}\left(v+\frac{5}{2}\right)
Tango \frac{2}{3} mai i v mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
18v^{2}+33v-30=18\times \frac{3v-2}{3}\times \frac{2v+5}{2}
Tāpiri \frac{5}{2} ki te v mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
18v^{2}+33v-30=18\times \frac{\left(3v-2\right)\left(2v+5\right)}{3\times 2}
Whakareatia \frac{3v-2}{3} ki te \frac{2v+5}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
18v^{2}+33v-30=18\times \frac{\left(3v-2\right)\left(2v+5\right)}{6}
Whakareatia 3 ki te 2.
18v^{2}+33v-30=3\left(3v-2\right)\left(2v+5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 18 me te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}