Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6\left(3q^{2}+q\right)
Tauwehea te 6.
q\left(3q+1\right)
Whakaarohia te 3q^{2}+q. Tauwehea te q.
6q\left(3q+1\right)
Me tuhi anō te kīanga whakatauwehe katoa.
18q^{2}+6q=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
q=\frac{-6±\sqrt{6^{2}}}{2\times 18}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
q=\frac{-6±6}{2\times 18}
Tuhia te pūtakerua o te 6^{2}.
q=\frac{-6±6}{36}
Whakareatia 2 ki te 18.
q=\frac{0}{36}
Nā, me whakaoti te whārite q=\frac{-6±6}{36} ina he tāpiri te ±. Tāpiri -6 ki te 6.
q=0
Whakawehe 0 ki te 36.
q=-\frac{12}{36}
Nā, me whakaoti te whārite q=\frac{-6±6}{36} ina he tango te ±. Tango 6 mai i -6.
q=-\frac{1}{3}
Whakahekea te hautanga \frac{-12}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
18q^{2}+6q=18q\left(q-\left(-\frac{1}{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 0 mō te x_{1} me te -\frac{1}{3} mō te x_{2}.
18q^{2}+6q=18q\left(q+\frac{1}{3}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
18q^{2}+6q=18q\times \frac{3q+1}{3}
Tāpiri \frac{1}{3} ki te q mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
18q^{2}+6q=6q\left(3q+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 18 me te 3.