Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9\left(2n^{2}-101n\right)
Tauwehea te 9.
n\left(2n-101\right)
Whakaarohia te 2n^{2}-101n. Tauwehea te n.
9n\left(2n-101\right)
Me tuhi anō te kīanga whakatauwehe katoa.
18n^{2}-909n=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
n=\frac{-\left(-909\right)±\sqrt{\left(-909\right)^{2}}}{2\times 18}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-\left(-909\right)±909}{2\times 18}
Tuhia te pūtakerua o te \left(-909\right)^{2}.
n=\frac{909±909}{2\times 18}
Ko te tauaro o -909 ko 909.
n=\frac{909±909}{36}
Whakareatia 2 ki te 18.
n=\frac{1818}{36}
Nā, me whakaoti te whārite n=\frac{909±909}{36} ina he tāpiri te ±. Tāpiri 909 ki te 909.
n=\frac{101}{2}
Whakahekea te hautanga \frac{1818}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 18.
n=\frac{0}{36}
Nā, me whakaoti te whārite n=\frac{909±909}{36} ina he tango te ±. Tango 909 mai i 909.
n=0
Whakawehe 0 ki te 36.
18n^{2}-909n=18\left(n-\frac{101}{2}\right)n
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{101}{2} mō te x_{1} me te 0 mō te x_{2}.
18n^{2}-909n=18\times \frac{2n-101}{2}n
Tango \frac{101}{2} mai i n mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
18n^{2}-909n=9\left(2n-101\right)n
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 18 me te 2.