Tīpoka ki ngā ihirangi matua
Whakaoti mō m
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

18m^{2}=-900
Tangohia te 900 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
m^{2}=\frac{-900}{18}
Whakawehea ngā taha e rua ki te 18.
m^{2}=-50
Whakawehea te -900 ki te 18, kia riro ko -50.
m=5\sqrt{2}i m=-5\sqrt{2}i
Kua oti te whārite te whakatau.
18m^{2}+900=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
m=\frac{0±\sqrt{0^{2}-4\times 18\times 900}}{2\times 18}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 18 mō a, 0 mō b, me 900 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{0±\sqrt{-4\times 18\times 900}}{2\times 18}
Pūrua 0.
m=\frac{0±\sqrt{-72\times 900}}{2\times 18}
Whakareatia -4 ki te 18.
m=\frac{0±\sqrt{-64800}}{2\times 18}
Whakareatia -72 ki te 900.
m=\frac{0±180\sqrt{2}i}{2\times 18}
Tuhia te pūtakerua o te -64800.
m=\frac{0±180\sqrt{2}i}{36}
Whakareatia 2 ki te 18.
m=5\sqrt{2}i
Nā, me whakaoti te whārite m=\frac{0±180\sqrt{2}i}{36} ina he tāpiri te ±.
m=-5\sqrt{2}i
Nā, me whakaoti te whārite m=\frac{0±180\sqrt{2}i}{36} ina he tango te ±.
m=5\sqrt{2}i m=-5\sqrt{2}i
Kua oti te whārite te whakatau.