Aromātai
9-6x
Whakaroha
9-6x
Graph
Tohaina
Kua tāruatia ki te papatopenga
18\left(\frac{2x}{9}+\frac{3}{9}\right)-12\left(\frac{5x}{6}-\frac{1}{4}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 9 me 3 ko 9. Whakareatia \frac{1}{3} ki te \frac{3}{3}.
18\times \frac{2x+3}{9}-12\left(\frac{5x}{6}-\frac{1}{4}\right)
Tā te mea he rite te tauraro o \frac{2x}{9} me \frac{3}{9}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
2\left(2x+3\right)-12\left(\frac{5x}{6}-\frac{1}{4}\right)
Whakakorea atu te tauwehe pūnoa nui rawa 9 i roto i te 18 me te 9.
2\left(2x+3\right)-12\left(\frac{2\times 5x}{12}-\frac{3}{12}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 6 me 4 ko 12. Whakareatia \frac{5x}{6} ki te \frac{2}{2}. Whakareatia \frac{1}{4} ki te \frac{3}{3}.
2\left(2x+3\right)-12\times \frac{2\times 5x-3}{12}
Tā te mea he rite te tauraro o \frac{2\times 5x}{12} me \frac{3}{12}, me tango rāua mā te tango i ō raua taurunga.
2\left(2x+3\right)-12\times \frac{10x-3}{12}
Mahia ngā whakarea i roto o 2\times 5x-3.
2\left(2x+3\right)-\left(10x-3\right)
Me whakakore te 12 me te 12.
4x+6-\left(10x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2x+3.
4x+6-10x-\left(-3\right)
Hei kimi i te tauaro o 10x-3, kimihia te tauaro o ia taurangi.
4x+6-10x+3
Ko te tauaro o -3 ko 3.
-6x+6+3
Pahekotia te 4x me -10x, ka -6x.
-6x+9
Tāpirihia te 6 ki te 3, ka 9.
18\left(\frac{2x}{9}+\frac{3}{9}\right)-12\left(\frac{5x}{6}-\frac{1}{4}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 9 me 3 ko 9. Whakareatia \frac{1}{3} ki te \frac{3}{3}.
18\times \frac{2x+3}{9}-12\left(\frac{5x}{6}-\frac{1}{4}\right)
Tā te mea he rite te tauraro o \frac{2x}{9} me \frac{3}{9}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
2\left(2x+3\right)-12\left(\frac{5x}{6}-\frac{1}{4}\right)
Whakakorea atu te tauwehe pūnoa nui rawa 9 i roto i te 18 me te 9.
2\left(2x+3\right)-12\left(\frac{2\times 5x}{12}-\frac{3}{12}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 6 me 4 ko 12. Whakareatia \frac{5x}{6} ki te \frac{2}{2}. Whakareatia \frac{1}{4} ki te \frac{3}{3}.
2\left(2x+3\right)-12\times \frac{2\times 5x-3}{12}
Tā te mea he rite te tauraro o \frac{2\times 5x}{12} me \frac{3}{12}, me tango rāua mā te tango i ō raua taurunga.
2\left(2x+3\right)-12\times \frac{10x-3}{12}
Mahia ngā whakarea i roto o 2\times 5x-3.
2\left(2x+3\right)-\left(10x-3\right)
Me whakakore te 12 me te 12.
4x+6-\left(10x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2x+3.
4x+6-10x-\left(-3\right)
Hei kimi i te tauaro o 10x-3, kimihia te tauaro o ia taurangi.
4x+6-10x+3
Ko te tauaro o -3 ko 3.
-6x+6+3
Pahekotia te 4x me -10x, ka -6x.
-6x+9
Tāpirihia te 6 ki te 3, ka 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}