Whakaoti mō x
x=-\frac{1}{3}\approx -0.333333333
x=\frac{5}{6}\approx 0.833333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-9 ab=18\left(-5\right)=-90
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 18x^{2}+ax+bx-5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-90 2,-45 3,-30 5,-18 6,-15 9,-10
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -90.
1-90=-89 2-45=-43 3-30=-27 5-18=-13 6-15=-9 9-10=-1
Tātaihia te tapeke mō ia takirua.
a=-15 b=6
Ko te otinga te takirua ka hoatu i te tapeke -9.
\left(18x^{2}-15x\right)+\left(6x-5\right)
Tuhia anō te 18x^{2}-9x-5 hei \left(18x^{2}-15x\right)+\left(6x-5\right).
3x\left(6x-5\right)+6x-5
Whakatauwehea atu 3x i te 18x^{2}-15x.
\left(6x-5\right)\left(3x+1\right)
Whakatauwehea atu te kīanga pātahi 6x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{5}{6} x=-\frac{1}{3}
Hei kimi otinga whārite, me whakaoti te 6x-5=0 me te 3x+1=0.
18x^{2}-9x-5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 18\left(-5\right)}}{2\times 18}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 18 mō a, -9 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 18\left(-5\right)}}{2\times 18}
Pūrua -9.
x=\frac{-\left(-9\right)±\sqrt{81-72\left(-5\right)}}{2\times 18}
Whakareatia -4 ki te 18.
x=\frac{-\left(-9\right)±\sqrt{81+360}}{2\times 18}
Whakareatia -72 ki te -5.
x=\frac{-\left(-9\right)±\sqrt{441}}{2\times 18}
Tāpiri 81 ki te 360.
x=\frac{-\left(-9\right)±21}{2\times 18}
Tuhia te pūtakerua o te 441.
x=\frac{9±21}{2\times 18}
Ko te tauaro o -9 ko 9.
x=\frac{9±21}{36}
Whakareatia 2 ki te 18.
x=\frac{30}{36}
Nā, me whakaoti te whārite x=\frac{9±21}{36} ina he tāpiri te ±. Tāpiri 9 ki te 21.
x=\frac{5}{6}
Whakahekea te hautanga \frac{30}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{12}{36}
Nā, me whakaoti te whārite x=\frac{9±21}{36} ina he tango te ±. Tango 21 mai i 9.
x=-\frac{1}{3}
Whakahekea te hautanga \frac{-12}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
x=\frac{5}{6} x=-\frac{1}{3}
Kua oti te whārite te whakatau.
18x^{2}-9x-5=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
18x^{2}-9x-5-\left(-5\right)=-\left(-5\right)
Me tāpiri 5 ki ngā taha e rua o te whārite.
18x^{2}-9x=-\left(-5\right)
Mā te tango i te -5 i a ia ake anō ka toe ko te 0.
18x^{2}-9x=5
Tango -5 mai i 0.
\frac{18x^{2}-9x}{18}=\frac{5}{18}
Whakawehea ngā taha e rua ki te 18.
x^{2}+\left(-\frac{9}{18}\right)x=\frac{5}{18}
Mā te whakawehe ki te 18 ka wetekia te whakareanga ki te 18.
x^{2}-\frac{1}{2}x=\frac{5}{18}
Whakahekea te hautanga \frac{-9}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{5}{18}+\left(-\frac{1}{4}\right)^{2}
Whakawehea te -\frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{4}. Nā, tāpiria te pūrua o te -\frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{5}{18}+\frac{1}{16}
Pūruatia -\frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{49}{144}
Tāpiri \frac{5}{18} ki te \frac{1}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{4}\right)^{2}=\frac{49}{144}
Tauwehea x^{2}-\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{49}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{4}=\frac{7}{12} x-\frac{1}{4}=-\frac{7}{12}
Whakarūnātia.
x=\frac{5}{6} x=-\frac{1}{3}
Me tāpiri \frac{1}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}