18 \div \frac { 3 } { 4 } - 35 \times 40 \%
Aromātai
10
Tauwehe
2\times 5
Tohaina
Kua tāruatia ki te papatopenga
18\times \frac{4}{3}-35\times \frac{40}{100}
Whakawehe 18 ki te \frac{3}{4} mā te whakarea 18 ki te tau huripoki o \frac{3}{4}.
\frac{18\times 4}{3}-35\times \frac{40}{100}
Tuhia te 18\times \frac{4}{3} hei hautanga kotahi.
\frac{72}{3}-35\times \frac{40}{100}
Whakareatia te 18 ki te 4, ka 72.
24-35\times \frac{40}{100}
Whakawehea te 72 ki te 3, kia riro ko 24.
24-35\times \frac{2}{5}
Whakahekea te hautanga \frac{40}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
24-\frac{35\times 2}{5}
Tuhia te 35\times \frac{2}{5} hei hautanga kotahi.
24-\frac{70}{5}
Whakareatia te 35 ki te 2, ka 70.
24-14
Whakawehea te 70 ki te 5, kia riro ko 14.
10
Tangohia te 14 i te 24, ka 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}