Whakaoti mō d
d=-\frac{34}{n-1}
n\neq 1
Whakaoti mō n
n=\frac{d-34}{d}
d\neq 0
Tohaina
Kua tāruatia ki te papatopenga
18=52+nd-d
Whakamahia te āhuatanga tohatoha hei whakarea te n-1 ki te d.
52+nd-d=18
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
nd-d=18-52
Tangohia te 52 mai i ngā taha e rua.
nd-d=-34
Tangohia te 52 i te 18, ka -34.
\left(n-1\right)d=-34
Pahekotia ngā kīanga tau katoa e whai ana i te d.
\frac{\left(n-1\right)d}{n-1}=-\frac{34}{n-1}
Whakawehea ngā taha e rua ki te n-1.
d=-\frac{34}{n-1}
Mā te whakawehe ki te n-1 ka wetekia te whakareanga ki te n-1.
18=52+nd-d
Whakamahia te āhuatanga tohatoha hei whakarea te n-1 ki te d.
52+nd-d=18
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
nd-d=18-52
Tangohia te 52 mai i ngā taha e rua.
nd-d=-34
Tangohia te 52 i te 18, ka -34.
nd=-34+d
Me tāpiri te d ki ngā taha e rua.
dn=d-34
He hanga arowhānui tō te whārite.
\frac{dn}{d}=\frac{d-34}{d}
Whakawehea ngā taha e rua ki te d.
n=\frac{d-34}{d}
Mā te whakawehe ki te d ka wetekia te whakareanga ki te d.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}