Whakaoti mō d
d=\frac{64}{5\left(n-1\right)}
n\neq 1
Whakaoti mō n
n=1+\frac{64}{5d}
d\neq 0
Tohaina
Kua tāruatia ki te papatopenga
18=5.2+nd-d
Whakamahia te āhuatanga tohatoha hei whakarea te n-1 ki te d.
5.2+nd-d=18
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
nd-d=18-5.2
Tangohia te 5.2 mai i ngā taha e rua.
nd-d=12.8
Tangohia te 5.2 i te 18, ka 12.8.
\left(n-1\right)d=12.8
Pahekotia ngā kīanga tau katoa e whai ana i te d.
\left(n-1\right)d=\frac{64}{5}
He hanga arowhānui tō te whārite.
\frac{\left(n-1\right)d}{n-1}=\frac{\frac{64}{5}}{n-1}
Whakawehea ngā taha e rua ki te n-1.
d=\frac{\frac{64}{5}}{n-1}
Mā te whakawehe ki te n-1 ka wetekia te whakareanga ki te n-1.
d=\frac{64}{5\left(n-1\right)}
Whakawehe \frac{64}{5} ki te n-1.
18=5.2+nd-d
Whakamahia te āhuatanga tohatoha hei whakarea te n-1 ki te d.
5.2+nd-d=18
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
nd-d=18-5.2
Tangohia te 5.2 mai i ngā taha e rua.
nd-d=12.8
Tangohia te 5.2 i te 18, ka 12.8.
nd=12.8+d
Me tāpiri te d ki ngā taha e rua.
dn=d+\frac{64}{5}
He hanga arowhānui tō te whārite.
\frac{dn}{d}=\frac{d+\frac{64}{5}}{d}
Whakawehea ngā taha e rua ki te d.
n=\frac{d+\frac{64}{5}}{d}
Mā te whakawehe ki te d ka wetekia te whakareanga ki te d.
n=1+\frac{64}{5d}
Whakawehe d+\frac{64}{5} ki te d.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}