Whakaoti mō x (complex solution)
x=\sqrt{970}-30\approx 1.144823005
x=-\left(\sqrt{970}+30\right)\approx -61.144823005
Whakaoti mō x
x=\sqrt{970}-30\approx 1.144823005
x=-\sqrt{970}-30\approx -61.144823005
Graph
Tohaina
Kua tāruatia ki te papatopenga
-\frac{1}{5}x^{2}-12x+32=18
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-\frac{1}{5}x^{2}-12x+32-18=0
Tangohia te 18 mai i ngā taha e rua.
-\frac{1}{5}x^{2}-12x+14=0
Tangohia te 18 i te 32, ka 14.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-\frac{1}{5}\right)\times 14}}{2\left(-\frac{1}{5}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -\frac{1}{5} mō a, -12 mō b, me 14 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-\frac{1}{5}\right)\times 14}}{2\left(-\frac{1}{5}\right)}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144+\frac{4}{5}\times 14}}{2\left(-\frac{1}{5}\right)}
Whakareatia -4 ki te -\frac{1}{5}.
x=\frac{-\left(-12\right)±\sqrt{144+\frac{56}{5}}}{2\left(-\frac{1}{5}\right)}
Whakareatia \frac{4}{5} ki te 14.
x=\frac{-\left(-12\right)±\sqrt{\frac{776}{5}}}{2\left(-\frac{1}{5}\right)}
Tāpiri 144 ki te \frac{56}{5}.
x=\frac{-\left(-12\right)±\frac{2\sqrt{970}}{5}}{2\left(-\frac{1}{5}\right)}
Tuhia te pūtakerua o te \frac{776}{5}.
x=\frac{12±\frac{2\sqrt{970}}{5}}{2\left(-\frac{1}{5}\right)}
Ko te tauaro o -12 ko 12.
x=\frac{12±\frac{2\sqrt{970}}{5}}{-\frac{2}{5}}
Whakareatia 2 ki te -\frac{1}{5}.
x=\frac{\frac{2\sqrt{970}}{5}+12}{-\frac{2}{5}}
Nā, me whakaoti te whārite x=\frac{12±\frac{2\sqrt{970}}{5}}{-\frac{2}{5}} ina he tāpiri te ±. Tāpiri 12 ki te \frac{2\sqrt{970}}{5}.
x=-\left(\sqrt{970}+30\right)
Whakawehe 12+\frac{2\sqrt{970}}{5} ki te -\frac{2}{5} mā te whakarea 12+\frac{2\sqrt{970}}{5} ki te tau huripoki o -\frac{2}{5}.
x=\frac{-\frac{2\sqrt{970}}{5}+12}{-\frac{2}{5}}
Nā, me whakaoti te whārite x=\frac{12±\frac{2\sqrt{970}}{5}}{-\frac{2}{5}} ina he tango te ±. Tango \frac{2\sqrt{970}}{5} mai i 12.
x=\sqrt{970}-30
Whakawehe 12-\frac{2\sqrt{970}}{5} ki te -\frac{2}{5} mā te whakarea 12-\frac{2\sqrt{970}}{5} ki te tau huripoki o -\frac{2}{5}.
x=-\left(\sqrt{970}+30\right) x=\sqrt{970}-30
Kua oti te whārite te whakatau.
-\frac{1}{5}x^{2}-12x+32=18
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-\frac{1}{5}x^{2}-12x=18-32
Tangohia te 32 mai i ngā taha e rua.
-\frac{1}{5}x^{2}-12x=-14
Tangohia te 32 i te 18, ka -14.
\frac{-\frac{1}{5}x^{2}-12x}{-\frac{1}{5}}=-\frac{14}{-\frac{1}{5}}
Me whakarea ngā taha e rua ki te -5.
x^{2}+\left(-\frac{12}{-\frac{1}{5}}\right)x=-\frac{14}{-\frac{1}{5}}
Mā te whakawehe ki te -\frac{1}{5} ka wetekia te whakareanga ki te -\frac{1}{5}.
x^{2}+60x=-\frac{14}{-\frac{1}{5}}
Whakawehe -12 ki te -\frac{1}{5} mā te whakarea -12 ki te tau huripoki o -\frac{1}{5}.
x^{2}+60x=70
Whakawehe -14 ki te -\frac{1}{5} mā te whakarea -14 ki te tau huripoki o -\frac{1}{5}.
x^{2}+60x+30^{2}=70+30^{2}
Whakawehea te 60, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 30. Nā, tāpiria te pūrua o te 30 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+60x+900=70+900
Pūrua 30.
x^{2}+60x+900=970
Tāpiri 70 ki te 900.
\left(x+30\right)^{2}=970
Tauwehea x^{2}+60x+900. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+30\right)^{2}}=\sqrt{970}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+30=\sqrt{970} x+30=-\sqrt{970}
Whakarūnātia.
x=\sqrt{970}-30 x=-\sqrt{970}-30
Me tango 30 mai i ngā taha e rua o te whārite.
-\frac{1}{5}x^{2}-12x+32=18
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-\frac{1}{5}x^{2}-12x+32-18=0
Tangohia te 18 mai i ngā taha e rua.
-\frac{1}{5}x^{2}-12x+14=0
Tangohia te 18 i te 32, ka 14.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-\frac{1}{5}\right)\times 14}}{2\left(-\frac{1}{5}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -\frac{1}{5} mō a, -12 mō b, me 14 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-\frac{1}{5}\right)\times 14}}{2\left(-\frac{1}{5}\right)}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144+\frac{4}{5}\times 14}}{2\left(-\frac{1}{5}\right)}
Whakareatia -4 ki te -\frac{1}{5}.
x=\frac{-\left(-12\right)±\sqrt{144+\frac{56}{5}}}{2\left(-\frac{1}{5}\right)}
Whakareatia \frac{4}{5} ki te 14.
x=\frac{-\left(-12\right)±\sqrt{\frac{776}{5}}}{2\left(-\frac{1}{5}\right)}
Tāpiri 144 ki te \frac{56}{5}.
x=\frac{-\left(-12\right)±\frac{2\sqrt{970}}{5}}{2\left(-\frac{1}{5}\right)}
Tuhia te pūtakerua o te \frac{776}{5}.
x=\frac{12±\frac{2\sqrt{970}}{5}}{2\left(-\frac{1}{5}\right)}
Ko te tauaro o -12 ko 12.
x=\frac{12±\frac{2\sqrt{970}}{5}}{-\frac{2}{5}}
Whakareatia 2 ki te -\frac{1}{5}.
x=\frac{\frac{2\sqrt{970}}{5}+12}{-\frac{2}{5}}
Nā, me whakaoti te whārite x=\frac{12±\frac{2\sqrt{970}}{5}}{-\frac{2}{5}} ina he tāpiri te ±. Tāpiri 12 ki te \frac{2\sqrt{970}}{5}.
x=-\left(\sqrt{970}+30\right)
Whakawehe 12+\frac{2\sqrt{970}}{5} ki te -\frac{2}{5} mā te whakarea 12+\frac{2\sqrt{970}}{5} ki te tau huripoki o -\frac{2}{5}.
x=\frac{-\frac{2\sqrt{970}}{5}+12}{-\frac{2}{5}}
Nā, me whakaoti te whārite x=\frac{12±\frac{2\sqrt{970}}{5}}{-\frac{2}{5}} ina he tango te ±. Tango \frac{2\sqrt{970}}{5} mai i 12.
x=\sqrt{970}-30
Whakawehe 12-\frac{2\sqrt{970}}{5} ki te -\frac{2}{5} mā te whakarea 12-\frac{2\sqrt{970}}{5} ki te tau huripoki o -\frac{2}{5}.
x=-\left(\sqrt{970}+30\right) x=\sqrt{970}-30
Kua oti te whārite te whakatau.
-\frac{1}{5}x^{2}-12x+32=18
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-\frac{1}{5}x^{2}-12x=18-32
Tangohia te 32 mai i ngā taha e rua.
-\frac{1}{5}x^{2}-12x=-14
Tangohia te 32 i te 18, ka -14.
\frac{-\frac{1}{5}x^{2}-12x}{-\frac{1}{5}}=-\frac{14}{-\frac{1}{5}}
Me whakarea ngā taha e rua ki te -5.
x^{2}+\left(-\frac{12}{-\frac{1}{5}}\right)x=-\frac{14}{-\frac{1}{5}}
Mā te whakawehe ki te -\frac{1}{5} ka wetekia te whakareanga ki te -\frac{1}{5}.
x^{2}+60x=-\frac{14}{-\frac{1}{5}}
Whakawehe -12 ki te -\frac{1}{5} mā te whakarea -12 ki te tau huripoki o -\frac{1}{5}.
x^{2}+60x=70
Whakawehe -14 ki te -\frac{1}{5} mā te whakarea -14 ki te tau huripoki o -\frac{1}{5}.
x^{2}+60x+30^{2}=70+30^{2}
Whakawehea te 60, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 30. Nā, tāpiria te pūrua o te 30 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+60x+900=70+900
Pūrua 30.
x^{2}+60x+900=970
Tāpiri 70 ki te 900.
\left(x+30\right)^{2}=970
Tauwehea x^{2}+60x+900. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+30\right)^{2}}=\sqrt{970}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+30=\sqrt{970} x+30=-\sqrt{970}
Whakarūnātia.
x=\sqrt{970}-30 x=-\sqrt{970}-30
Me tango 30 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}