Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y^{2}=9-18
Tangohia te 18 mai i ngā taha e rua.
y^{2}=-9
Tangohia te 18 i te 9, ka -9.
y=3i y=-3i
Kua oti te whārite te whakatau.
18+y^{2}-9=0
Tangohia te 9 mai i ngā taha e rua.
9+y^{2}=0
Tangohia te 9 i te 18, ka 9.
y^{2}+9=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
y=\frac{0±\sqrt{0^{2}-4\times 9}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me 9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 9}}{2}
Pūrua 0.
y=\frac{0±\sqrt{-36}}{2}
Whakareatia -4 ki te 9.
y=\frac{0±6i}{2}
Tuhia te pūtakerua o te -36.
y=3i
Nā, me whakaoti te whārite y=\frac{0±6i}{2} ina he tāpiri te ±.
y=-3i
Nā, me whakaoti te whārite y=\frac{0±6i}{2} ina he tango te ±.
y=3i y=-3i
Kua oti te whārite te whakatau.